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Abstract

For the mechanism of ship capsizing, we can generally consider that it’s caused due
to pure loss of stability, parametric oscillation(low cycle resonance) of ship in waves
and the broaching phenomena. Among them, low cycle resonance occurs due to the
dynamic change of righting arm with respect to the relative position of ship to waves.
The dynamic change depends on the encounter period of a ship in following waves.
This paper discusses the following items : (1) An analytical expression of GZ curve
varying with respect to the relative position of ship to waves, (2) Non-linear equation
of motion describing low cycle resonance, (3) The effects of righting arm, stability
range and encounter period on low cycle resonance.

1 Introduction

When a ship is travelling in following seas, the rolling motion will be developed to large
amplitude such as lead up to capsizing in a very short time if the encounter wave period
is nearly equal to a half of the natural rolling period. Such a rolling motion is so called
low cycle or parametric resonance which is a dangerous situation for ships of poor stability
even satisfying A167 and A562 of IMO resolution at the critical requirement. Although
ships are usually designed with consideration of safety margin with respect to capsizing
throughout various conditions, the combination of severe waves , loading condition , ship
speed and heading angle may lead them to poor stability.

Analytical approaches to this problem were originally made by Grim[1], Kerwin[2] and
Paulling[3]. They pointed out that low cycle resonance occurs due to the dynamic change
of righting arm with respect to the relative position of ship to waves and the unstable
regions of low cycle resonance are specified as the solution of linear differential equation
of the so called Mathieu’s type. It is impossible to simulate the rolling motion of large
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of the so called Mathieu’s type. It is impossible to simulate the rolling motion of large
amplitude leading up to capsizing by solving the linear equation of motion mentioned above,
because the righting arm is actually described in a nonlinear function. Hence it is difficult
to understand the rolling motion of large amplitude in detail.

This paper focuses on making an analytical approach to this problem by taking into
account a non-linear righting arm GZ instead of linear one. Since this equation of motion
is described in an analytical expression, it will be possible to investigate the features of
low cycle resonance in detail.

2 Equation of Motion

In this section, an equation of motion is derived to perform an analytic approach to the
low cycle resonance. The single degree of rolling motion can be described in the following
fom ve .

(L + J.)$ + K3+ WGZ (£, 8) = 0 1)

where I.is the mass moment of inertia of a ship, J, added mass moment of inertia, K é
damping coefficient, W the weight of a ship and GZ (g, ¢) righting arm at heeling angle
¢ at the relative position £ of ship to waves.

Since GZ(&c, ¢) in Eq. (1) depends on not only & and ¢ but the hull form metacentric
height GM, wave length A\ and wave height H, it is almost impossible to describe the com-
plete expression of GZ (¢, ¢) with an analytical function. We have to make a reasonable
approximation for GZ({¢, ¢). For a simplified expression of GZ , it seems reasonable to
use the sinusoidal function described in the following form

=& GM sz’mrf— (2

n r

GZ

where ¢.is the angle of vanishing stability and the initial metacentric height GM is given
by

dGZ
om= {2} 0

7S 3)

It is necessary to take into account the variation of GM which increases at the wave trough
amidships and decreases at the wave crest amidships. Concerning this problem Kerwin
gave a simple expression of GM (wave) as

GM(wave) = GM + AGMcosk(ég — ct) 0]
which corresponds to the wave profile ¢,

Cw = acosk(€ — ct) )]

where G M (wave) is the metacentric height in a wave, AG Mthe small change from GM in
still water, & wave number equal to 27/, ¢ wave celerity and ¢ time. Now let us consider
the relationship between the variation of GM (wave) and the relative position of ship to
wave.
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Fig.1 shows the wave profile and the variation ofG M (wave) which is increased at the
wave trough £;/A = 0, equal to GM at the up slope £/)\ = 0.25 , decreased at the wave
crest £/A = 0.5, equal to GM at the down slope £5/) = 0.75 and again increased at
the wave trough /A = 1. The remaining problem is how to determine the angle ¢, of
vanishing stability which is larger at the wave trough amidships and smaller at the wave
crest amidships than that of still water. Here a simplified assumption is made to determine
¢, by in same way as the variation of GM, that is

b, = Pr[1 + é?003’“(50 — ct)] (6)
dr

where ¢ is the angle of vanishing stability in still water and A¢ the small change from
¢g. From the discussion mentioned above, GZ({g, ¢) is given by

_ &

T

GZ(&c, 9)

GMI1 + AGGX cosk(éc — ct)]sz'mrg; (7)

Finally, a non-linear equation of motion in Eq.(1) can be described in an analytical form as

b+ 20,0 + %wd,z{l + AGG]\T cos(k& — wet)]simr% =0 (8)
where
A

b = ol + 2Leos(kéy — wet)] ©

or

K,
200 = 707 (10)
. W.GM

Wo = I+ J, (b

Assuming that £sis equal to &, at the time ¢ = 0 and the ship speed U, {qis equal to §y+ Ut
at any time and encounter wave frequency w, = k(c — U) . In addition, if the rolling angle
is small in Eq.(8),

.9 0]
SINT— o~ T— 12
PR (2
So that Eq.(8) is linearized as
b+ 2000 + we[1 + AGM cos(k&y — wet)] =0 (13)

GM

This is the traditional equation of motion for low cycle resonance introduced by Grim
in 1952.
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3 Solution of Equation

Let us first consider the solution of linear equation to understand the outline of important
parameter. In this case, the lowest and widest unstable region occurs at an exciting frequency
of twice of the natural frequency. Thus, unstable roll will be excited if the ship encounter
head or following seas with a frequency of encounter equal to twice of the natural frequency
of roll. (For usual ship-wave proportion in which capsizing is likely, this occurs only in
following seas.)

The problem considered here is investigation of the feature of rolling motion based on
the solutions of linear and non-linear equation. That is why, according to the results of
free running model test carried out before, the unstable rolling motion is developed to a
large amplitude leading up to capsize in a very short time. It is of interest to know what
to develop the rolling amplitude in a very short time.

3.1 Solution of Linear Equation

Since Eq.(13) is not a complete form of Mathieu’s equation, in finding out the important
parameters which are influential, Eq.(13) can be transformed into the complete form as
follows.

2o T., ey AGM
Tzt T [1—(—7?) + i cosT]® =0 14
by using the following relations
B(t) = B(t)e ", 7 = wet (15)

where a. ‘is the effective extinction coefficient given by . = 2a./T and T the natural
period of roll, and T, is encountering period.

In Eq.(14), a. is too small in comparison with 7 . Thus a. can not be a major factor
on the rolling motion. The outline of rolling motion will be mainly determined by two
parameters AGM /GM and T/T,. Eq.(14) is known as Mathieu’s equation. Solutions can
be expressed in the form of special functions. This equation is a linear differential equation
which has the presence of a time-dependent coefficient of the rolling motion variable ®.
The solutions to Mathieu’s equation have a property of considerable importance in ship
rolling problems in that the solution is unstable for certain values of the period. This
implies that if the rolling motion described by Eq.(13) is taken place in an unstable region,
the amplitude will grow up.

Let us now try to solve Eq.(13) by using a numerical approximation method to obtain
the property above mentioned in Eq.(14). A numerical procedure is used to integrate
the equation by adopting a step-by-step approximation. Fig.2 is a graph of AGM/GM
versus T'/T, for the Mathieu’s equation in which regions correspond to stable and unstable
solutions. It is seen that unstable rolling occurs in the wide range 7/7, when AGM /GM
has large values. Fig.3 is time histories of

rolling motion corresponding to the stable, critical and unstable regions respectively.
The unstable rolling motion grow up gradually, that is to say, it takes a long time to have
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a large amplitude which leads up to capsizing. This appearance is caused by a linear GZ
curve.

3.2 Solution of Non-Linear Equation

Let’s give a try to solve Eq.(8) described with a non-linear GZ curve as shown in Fig.4
and 5. In the same way as before, Fig.6 shows the region for stability of solutions by
AGM/GM versus T/T, . There are three regions of stable, unstable and critical in which
the rolling motion grows up until a physical constraint included in this equation is operated.
Fig.7 indicates the time histories of rolling motion for stable, critical and unstable regions.
The rolling motion in unstable region shows quite different behavior from that of a linear
equation. This is due to a non-linear GZ curve and seems to be similar to an actual motion
obtained from model experiments. Figs.8 and 9 are the time histories of rolling motion for
a ship having different stability range at wave crest and trough amidship.

As the result of the analysis mentioned above, we know that the time histories obtained
from non-linear equation in the unstable region do not make much difference to the experi-
mental results5) shown in Fig.10 and 11. It implies that the non-linear righting arm should
be taken into account to express the unstable roll of a large amplitude leading up to capsize
in a very short time.

Furthermore, we can explain this easily. Because a ship can encounter the chance to
have the unstable rolling motion even if in a irregular wave. When the ship has larger
variation of GZ, the unstable rolling motion is easy to occur in the wider range of wave
encounter period as shown in Fig.6. Therefore, in order to find out the range of low cycle
resonance, it is necessary to evaluate exactly the variation of GZ in waves and to consider
the combination of the variation of GZ, wave encounter period 7, , and natural rolling period
T which depend on the ship hull configuration, speed and wave profile. From the view
point of safety at sea, this is a important problem to the designers of ship hull configuration
and the operators of a ship in rough seas because the domestic and international stability
standards do not guarantee the critical limit of this problem.

4 Conclusions

An analytical study is attempted to investigate the fundamental nature of low cycle reso-
nance. The following conclusions are drawn from the present research.

(1) A new equation describing a single rolling motion is presented to obtain the stable
and unstable regions of roll. The regions are also compared with the results obtained from
the traditional equation of motion.

(2) The time histories of rolling motion in the stable, unstable and critical rolling region
are computed by a numerical approximation method. The unstable rolling motion obtained
from a non-linear equation seems to be reasonable in comparison with experimental results.

(3) This approach will be available to consider the experimental results of free running
model test because a single equation of motion is more understandable than the equations
of motion of six degree freedom to know the outline of low cycle resonance.
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Figure 10: The results of free running model
test for container ship in the unstable region

65

No.237  Fn=0.09 x=0deg.
Ior Pitch angles (deg.)

— {sec)]
] S —_ ST
| k! 60
-20L

Figure 11: The results of free running model
test for container ship in the critical zone



