• Title/Summary/Keyword: ship motions

Search Result 291, Processing Time 0.023 seconds

Prediction of Ship Manoeuvring Performance Based on Virtual Captive Model Tests (가상 구속모형시험을 이용한 선박 조종성능 평가)

  • Sung, Young Jae;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.407-417
    • /
    • 2015
  • For the more accurate prediction on manoeuvring performance of a ship at initial design phase, bare hull manoeuvring coefficients were estimated by RANS(Reynolds Averaged Navier-Stokes) based virtual captive model tests. Hydrodynamic forces and moment acting on the hull during static drift and harmonic oscillatory motions were computed with a commercial RANS code STAR-CCM+. Automatic and consistent mesh generation could be implemented by using macro functions of the code and user dependency could be greatly reduced. Computed forces and moments on KCS and KVLCC 1&2 were compared with the corresponding measurements from PMM(Planar Motion Mechanism) tests. Quite good agreement can be observed between the CFD and EFD results. Manoeuvring coefficients and IMO standard manoeuvres estimated from the computed data also showed reasonable agreement with those from the experimental data. Based on these results, we could confirm that the developed virtual captive manoeuvring model test process could be applied to evaluate manoeuvrability of a ship at the initial hull design phase.

A Study on the Response of the Motions and Strength of Ships in Waves taking account of Non-linerities (비선형을 고려한 파랑중 선체 운동과 강도 응답에 관한 연구)

  • C.Y.,Kim;J.A.,Kim;S.S.,Kim;B.K.,Hong;D.M.,Bae
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.51-66
    • /
    • 1987
  • In this paper, the authors investigate theoretically the motion and longitudinal strength of ships among waves talking account of the effects of nonlinearities such as the hull shape, bottom emergence, and hydrodynamic impact. Incidentally the ship is treated as an elastic beam in heading wave condition regarding characteristics of slamming and whipping-according to the variation in the range of a quarter length of the ship forward and the increase of the elastic modes up to 4-th vibration mode were investigated by the present theory. Calculations are performed for 97m container ship and its validity is confirmed by a series of model tests. Conclusions obtained are as follows; 1) Acceleration and pressure estimated by the present theory are in good accordance with experiments. 2) The present non-linear theory may be applied for estimating longitudinal bending moment of ships in slamming and whipping conditions. 3) In investigation of the characteristic in response according to shape variation for parts under draft and vow-flare in the range of a quarter length of the ship forward, dynamic responses due to the former were much more conspicuous than those due to the later. 4) In the maximum bending moment, the considering case up to 2-the mode are larger, about $10{\sim}15%$, than that up to 4-th mode.

  • PDF

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(II) (항만내 파도응답과 계류선박의 운동해석(II))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.87-93
    • /
    • 1993
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Experiments are performed in a shallow basin. A ship model is set moored by soft springs at various positions in a model harbor subjected to regular waves with period ranging from 2 to 3 seconds. Wave and ship responses are measured and compared with theory. It is found that theoretical results agree qualitatively with experimental results. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

An Analysis of Excitation Forces on the Ship Hull Induced by the Propller (프로펠러에 의해 유기된 선체표면 기진력 해석)

  • C.S. Lee;J.T. Lee;J.C. Suh;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.81-92
    • /
    • 1992
  • This paper deals with the procedure for developing a computer program which can predict the pressure fluctuation on the ship hull by solving the boundary value problem on the hull subject to the influence of the unsteady propeller and cavity motions. The program is applied to the solution of flow around a sphere under the influence of point sources simulating the propeller cavity, and then is compared with the analytic solution based on Butler's sphere theorem. The effect of free surface condition, either pressure-free or rigid-wall, upon the pressure distribution is studied. The computer code is also applied to a RO-RO ship, leading to the conclusion that the package may be useful for the analysis of excitation forces on the ship hull induced by the propeller in the design process.

  • PDF

Linear Time Domain Analysis of Radiation Problems (시간영역법에 의한 강제동요시 동유체력 해석)

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

Damping Plate Effects on the Fatigue Life of Riser Connected to Cell Spar Platform

  • Jeong, Hyeon-Su;Choi, Hang-Shoon;Lim, Seung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.17-26
    • /
    • 2006
  • Spar platforms have been installed as a competitive alternative offshore production structure for deepwater oil field. Since the first spar platform was constructed, its configuration has evolved to the so-called the truss spar and then the cell spar. This paper describes the dynamic analysis and fatigue life assessment of steel catenary riser (SCR) connected to cell spar platform. Two different cell spar platforms are considered herein; the original cell spar and the modified one. The original cell spar was modified by introducing an additional damping plate at its bottom in order to reduce wave-frequency motions. Firstly the wave-frequency motions of cell spar platforms are calculated based on the potential theory. Then, the dynamic responses of SCR induced by platform motions are computed. Finally the fatigue life of SCR is estimated by spectral method and the performance of two spar platforms are compared in terms of the fatigue life. Through the present study, it is found that the fatigue life of the modified cell spar increases only slightly.

Analysis of Motions and Wave Loads of Twin-Hull Ships in Waves (쌍동선의 운동 및 파랑하중 해석)

  • Goo, Ja-Sam;Jo, Hyo-Jae;Lee, Seung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.132-142
    • /
    • 1999
  • A three-dimensional linearised potential theory is presented for the prediction of motions and dynamic structural responses of twin-hull ships travelling with forward speed in regular waves. Comparisons between theoretical and experimental results are shown for the motion responses and lateral wave loads of an ASR(anti-submarine rescue) catamaran. In general, good agreement between theory and experiment is found except for some discrepancies that are believed to be caused by neglect of forward speed effects on free surface.

  • PDF

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.399-406
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistits of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

A comparative assessment of approximate methods to simulate second order roll motion of FPSOs

  • Somayajula, Abhilash;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-74
    • /
    • 2017
  • Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most commonly used floating production units to extract hydrocarbons from reservoirs under the seabed. These structures are usually much larger than general cargo ships and have their natural frequency outside the wave frequency range. This results in the response to first order wave forces acting on the hull to be negligible. However, second order difference frequency forces start to significantly impact the motions of the structure. When the difference frequency between wave components matches the roll natural frequency, the structure experiences a significant roll motion which is also termed as second order roll. This paper describes the theory and numerical implementation behind the calculation of second order forces and motions of any general floating structure subjected to waves. The numerical implementation is validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the popular approximations used to simplify the computation of second order forces and provides a discussion on the limitations of each approximation.