• Title/Summary/Keyword: shift multiplexing.

Search Result 79, Processing Time 0.022 seconds

A Study on CSMA/CA for WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • Recently, a basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size. Also, a time of packet transmission delay increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (AWGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

Novel Adaptive Distributed Compressed Sensing Algorithm for Estimating Channels in Doubly-Selective Fading OFDM Systems

  • Song, Yuming;He, Xueyun;Gui, Guan;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2400-2413
    • /
    • 2019
  • Doubly-selective (DS) fading channel is often occurred in many orthogonal frequency division multiplexing (OFDM) communication systems, such as high-speed rail communication systems and underwater acoustic (UWA) wireless networks. It is challenging to provide an accurate and fast estimation over the doubly-selective channel, due to the strong Doppler shift. This paper addresses the doubly selective channel estimation problem based on complex exponential basis expansion model (CE-BEM) in OFDM systems from the perspective of distributed compressive sensing (DCS). We propose a novel DCS-based improved sparsity adaptive matching pursuit (DCS-IMSAMP) algorithm. The advantage of the proposed algorithm is that it can exploit the joint channel sparsity information using dynamic threshold, variable step size and tailoring mechanism. Simulation results show that the proposed algorithm achieves 5dB performance gain with faster operation speed, in comparison with traditional DCS-based sparsity adaptive matching pursuit (DCS-SAMP) algorithm.

A low-complexity PAPR reduction SLM scheme for STBC MIMO-OFDM systems based on constellation extension

  • Li, Guang;Li, Tianyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2908-2924
    • /
    • 2019
  • Multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) is widely applied in wireless communication by virtue of its excellent properties in data transmission rate and transmission accuracy. However, as a major drawback of MIMO-OFDM systems, the high peak-to-average power ratio (PAPR) complicates the design of the power amplifier at the receiver end. Some available PAPR reduction methods such as selective mapping (SLM) suffer from high computational complexity. In this paper, a low-complexity SLM method based on active constellation extension (ACE) and joint space-time selective mapping (AST-SLM) for reducing PAPR in Alamouti STBC MIMO-OFDM systems is proposed. In SLM scheme, two IFFT operations are required for obtaining each transmission sequence pair, and the selected phase vector is transmitted as side information(SI). However, in the proposed AST-SLM method, only a few IFFT operations are required for generating all the transmission sequence pairs. The complexity of AST-SLM is at least 86% less than SLM. In addition, the SI needed in AST-SLM is at least 92.1% less than SLM by using the presented blind detection scheme to estimate SI. We show, analytically and with simulations, that AST-SLM can achieve significant performance of PAPR reduction and close performance of bit error rate (BER) compared to SLM scheme.

Performance Analysis of Dual-Layer Differential Precoding Technique Using 8-PSK Constellation (8-PSK 성운을 이용하는 이중계층 차분 선부호화 기법의 성능 분석)

  • Park, Noe-Yoon;Kim, Young-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.401-408
    • /
    • 2013
  • Dual-layer differential codebook using 8-PSK (phase shift keying) constellation as its codeword elements, is proposed for Long term evolution (LTE) and/or LTE-Advanced systems. Due to the temporal correlation of the adjacent channel matrices, the consecutive precoding matrices are likely to be similar. This approach quantize only the differential information of the channel instead of the whole channel subspace, which virtually increase the codebook size to realize more accurate quantization of the channel. Especially, the proposed codebook has the same properties of LTE release-8 codebook that is, constant modulus, complexity reduction, and nested property. The mobile station can be designed by using less expensive non-linear amplifier utilizing constant modulus property. Computer simulations show that the capacity of the proposed dual-layer codebook performs almost 1.2dB better than those of any other non-differential codebooks with the same amount of feedback information.

A Study on Visible Light Communication with Turbo Coded OFDM for Intelligent Transport Systems (지능형 교통 시스템을 위한 Turbo Code OFDM 적용한 가시광 통신 시스템에 관한 연구)

  • Koo, Sung-Wan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.60-67
    • /
    • 2010
  • In the ubiquitous age, applications of wireless personal area network (WPAN) technology using LEDs are in progress. However, visible light communications (VLC) using the LEDs have weakness which deteriorate performance of communication because of multi-path fading that occurs propagation delay by interior walls or other things in indoor environments. In this paper, orthogonal frequency division multiplexing (OFDM) scheme is adapted to decrease multi-path fading and multi-path dispersion and to provide high speed data transmission. Besides, to reduce information losses caused by optical noise (incandescent lamps, fluorescent lamps, sunbeam etc.) also proposed channel coding using turbo codes. The encoding and decoding of the proposed system is described, and simulation results are analyzed. We can know that performance of proposed system is increased about 4 [dB] through the simulation results. Also, when the system take doppler effect, the system performance worsened.

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

A Novel Dual-Layer Differential Equal Gain Transmission Technique Using M-PSK Constellations (M-PSK 성운을 이용한 새로운 이중계층 차분 동 이득 전송 기술)

  • Kim, Young-Ju;Seo, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.627-635
    • /
    • 2015
  • We propose a dual-layer differential equal-gain codebook design methodology for LTE-Advanced(LTE-A), IEEE802.ac, and radar system having multiple transmit and receive antennas, and make computer simulations to evaluate its link-level performaces. M-ary phase shift keying constellation is used as its codeword elements to utilize low-cost power amplifiers at mobile stations. Especially, the proposed codebook can meet radar systems requirement for the high-powered equal-gain transmission property. Due to the temporal correlation of the adjacent channel, the proposed differential codebook can quantize only the differential information of the channel instead of the whole channel subspace, which virtually increase the codebook size to realize more accurate quantization of the channel. The proposed codebook has the same properties of LTE codebook that is, constant modulus, complexity reduction, and nested property. Computer simulations show that the proposed codebook performs better than the conventional 8-ary codebooks with the same amount of feedback information.

Experimental Performance Evaluation of MIMO Underwater Acoustic Communication in Water Tank (수조에서 MIMO 수중음향통신의 실험적 성능 고찰)

  • Gwun, Byung-Chul;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1577-1582
    • /
    • 2013
  • In this paper, we have analyzed the performance of MIMO (Multi-Input Multi-Output) underwater acoustic communication by using the acquired data via the experiments in water tank. First of all, in the pursuit of this aim, we have measured the channel transfer characteristics at several transceiver locations. The transmitted signal was modulated by QPSK(Quadrature Phase Shit Keying) and the received signal was recovered through the detector that contains the zero forcing equalizer. A maximum 30~40 ms delay was appeared because of physically closed water tank environment that has the harsh multi-path transmission conditions. In result of experiment, even though the bit error rate showed comparatively large when $2{\times}2$ MIMO system with two transmitters and receivers was considered. However, we confirmed it has approximately 15% enhanced performance compared with SISO (Single-Input Single-Output) system.

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

Digital Holographic Security Identification System (디지털 홀로그래픽 보안 인증 시스템)

  • Kim, Jung-Hoi;Kim, Nam;Jeon, Seok-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we implement a digital holographic security card system that combines digital holographic memory using random phase encoded reference beams with electrical biometrics. Digitally encoded data including a document, a picture of face, and a fingerprint are recorded by multiplexing of holographic memory. A random phase mask encoding reference beams are used as a decoded key to protect illegal counterfeit. As a result, we can achieve a raw BER of 3.6${\times}$10-4 and shift selectivity of 4${\mu}{\textrm}{m}$ using the 2D random phase mask. Also, we develop a recording pattern and image processing which are suitable for a low cost reader without a position sensing photo-detector for real time data extraction and remove danger of fraud from unauthorized person by comparing the reconstructed holographic data with the live fingerprint data.