• Title/Summary/Keyword: shield TBM tunneling

Search Result 40, Processing Time 0.027 seconds

The suggestion of tunneling information and detail requirements for EPB shield machine design (토압식 쉴드TBM 장비설계를 위한 설계항목과 세부 요구사양의 구성에 관한 제안)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • Recently, tunneling projects using shield TBM are increasing in Korea, but the information of client for machine design and manufacturing considering the characteristics of the tunneling phase is not formal, and it is difficult to optimized machine for suitable tunneling works. This paper suggest as for reference the required terms that can be used in Korea on the design items and detailed requirements for ordering of EPB shield TBM based on overseas case study. It would be hope that the TBM user can request the overall tunneling plan and required machine specification when ordering TBM, and the TBM supplier can design and manufacturing that is clear condition and suitable machine for the successful project, so that there are no residential civil complaints and for safe tunneling as well, shield TBM tunneling method will be activated.

A study on Gap Parameter and Influence Area of Ground Settlement Using Back Analysis Constructed by Shield TBM with Shallow Depth (천층터널 쉴드TBM에서 역해석을 이용한 Gap Parameter 및 지표침하 영향범위에 대한 연구)

  • Koh, Sung-Yil;Kwon, Sung-Ju;Hwang, Chang-Hee;Kim, Sang-In;Choo, Seok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1509-1518
    • /
    • 2011
  • Shield TBM tunneling method has been getting the spotlight for urban tunneling. It can be minimized the civil complaint during construction and possible safe tunneling. But the settlement has occurred inevitably due to characteristics of shield TBM equipment. For this reason, the civil complaint can occur in urban areas when tunnel with shallow depth passes through neighboring building or residential area. In this study, the occurrence factors of settlement according to shield TBM tunneling and the tendency of ground settlement by strata condition had analyzed. It is suggested that the practical settlement estimation method and minimizing method of ground settlement under simultaneous backfill grouting condition through measurement results and back analysis data using gap parameter.

  • PDF

Exposure Characteristics to Noise Among Tunnel Construction Workers (터널공사현장 근로자의 소음노출 특성 평가)

  • Kim, Kab Bae;Jang, Jae-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.831-840
    • /
    • 2013
  • The noise levels of workers in tunnel sites are likely to be high because tunneling work places are confined space. However, research on the noise exposure levels of tunneling workers have not been performed intensively due to restricted accessibility to tunnel construction sites. The aim of this study is to evaluate the noise exposure levels for workers engaged in tunneling work sites. Noise dosimeters were used for monitoring workers' noise exposure level in 5 tunneling work sites in accordance with the Notification of the Ministry of Labor. Among 5 tunneling work sites, 4 of them used NATM tunneling method and 1 work site used shield TBM tunneling method. The average noise exposure levels of NATM tunneling workers was 81.1 dB(A) and 15.4 % of the workers' noise level were exposed more than 90 dB(A) which is the exposure limit value. In Shield TBM tunneling method, 4.3 % of the workers were exposed more than 90 dB(A) of noise level, the average noise exposure levels of TBM tunneling workers was 84.1 dB(A).

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

  • Kim, Kiseok;Oh, Juyoung;Lee, Hyobum;Kim, Dongku;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.823-831
    • /
    • 2018
  • The most important issue during shield TBM tunneling in soft ground formations is to appropriately control ground surface settlement. Among various operational conditions in shield TBM tunneling, the face pressure and backfill pressure should be the most important and immediate measure to restrain surface settlement during excavation. In this paper, a 3-D hydro-mechanical coupled FE model is developed to numerically simulate the entire process of shield TBM tunneling, which is verified by comparing with real field measurements of ground surface settlement. The effect of permeability and stiffness of ground formations on tunneling-induced surface settlement was discussed in the parametric study. An increase in the face pressure and backfill pressure does not always lead to a decrease in surface settlement, but there are the critical face pressure and backfill pressure. In addition, considering the relatively low permeability of ground formations, the surface settlement consists of two parts, i.e., immediate settlement and consolidation settlement, which shows a distinct settlement behavior to each other.

Favorable driving direction of double shield TBM in deep mixed rock strata: Numerical investigations to reduce shield entrapment

  • Wen, Sen;Zhang, Chunshun;Zhang, Ya
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.237-245
    • /
    • 2019
  • In deep mixed rock strata, a double shield TBM (DS-TBM) is easy to be entrapped by a large force during tunneling. In order to reduce the probability of the entrapment, we need to investigate a favorable driving direction, either driving with or against dip, which mainly associates with the angle between the tunneling axis and strike, ${\theta}$, as well as the dip angle of rock strata, ${\alpha}$. We, therefore, establish a 3DEC model to show the changes of displacements and contact forces in mixed rock strata through LDP (longitudinal displacement profile) and LFP (longitudinal contact force profile) curves at four characteristic points on the surrounding rock. This is followed by a series of numerical models to investigate the favorable driving direction. The computational results indicate driving with dip is the favorable tunneling direction to reduce the probability of DS-TBM entrapment, irrespective of ${\theta}$ and ${\alpha}$, which is not in full agreement with the guidelines proposed in RMR. From the favorable driving direction (i.e., driving with dip), the smallest contact force is found when ${\theta}$ is equal to $90^{\circ}$. The present study is therefore beneficial for route selection and construction design in TBM tunneling.

Shield TBM trouble cases review and parameter study for the cause analysis (쉴드 TBM 트러블 사례 및 매개변수 연구를 통한 원인 분석)

  • Koh, Sungyil;La, You-Sung;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.197-217
    • /
    • 2020
  • Shield TBM tunneling, used in the construction of Seoul subway line 7 and line 9, has been well known as a very efficient, as well as safe, tunneling method. Although the Shield TBM method has been known to be effectively used in poor ground conditions, a number of troubles have occurred during the use of the shield TBM, due to inappropriate machine selection, machine breakdown, and unpredicted ground conditions etc. In this study, several accidents and trouble cases occurred during excavation by Shield TBM, reported from Japan, were investigated. A series of numerical analysis was then performed to compare with the trouble cases and back-analysis results for the cause analysis. The lessons learned from the case studies are presented at the end.

Case study for technical evaluation and check list to decision of optimized TBM (최적 TBM 장비 발주를 위한 선정 기준 및 체크리스트 사례 검토)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • When ordering a slurry shield TBM to be used for power cable tunneling, the client organizes an evaluation committee composed of experts, suggest the criteria and evaluation method for technical specifications for supplier selection, and based on the manufacturer's technical proposal were attempted to evaluate and select. It is expected to be referred to as a guideline for future projects to using Shield TBM as one of the methods of verifying performance and quality in advance and securing economic feasibility in the shield TBM tunneling in the recent increasing trend.

Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground (사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Chang, Seokbue;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.375-392
    • /
    • 2018
  • The shield TBM method is widely adopted for tunneling works in urban area because it has more beneficial ways to control settlement at ground surface than conventional mined tunneling. In the shield tunneling, backfill grouting at tail void is crucial because it is supposed not only to restraint ground deformation around tail void during excavation but also to compensate precedent ground settlement by pushing up the ground with highly pressurized grout. However, the tail void grouting has been found to be ineffective for settlement compensation particularly in sandy ground, which might be caused by complicate interaction between ground and tail void grouting. In this paper, the effects of tail void grouting on behavior of ground in shield TBM tunneling were investigated based on 3-dimensional finite element analyses. The results of numerical analyses indicated that backfill grouting actually reduces settlement by degrading settlement increasing rate in excavation, which means decrease of volume loss. Meanwhile, the grouting could not contribute to compensate the precedent settlement, because reduction of volume loss by grouting was found to be counterbalanced by volume change of ground.

Simulation of shield TBM tunneling in soft ground by laboratory model test (실내모형시험을 통한 연약지반의 쉴드 TBM 터널굴착 모사)

  • Han, Myeong-Sik;Kim, Young-Joon;Shin, Il-Jae;Lee, Yong-Joo;Shin, Yong-Suk;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.483-496
    • /
    • 2013
  • This paper presents the shield TBM technology in soft ground tunnelling. In order to perform this study, a scale model test was carried out using the developed small scaled shield TBM machine. The various instrumentations were conducted during the simulation of tunnelling. In addition, the ground behavior due to the shield TBM operation parameters was measured during the simulation. Based on the simulation results, the stability of the ground was evaluated and the fundamental shield TBM tunnelling technique in the soft ground was suggested. In conclusion, design's reliability through laboratory small scale model test about Shield-TBM section was obtained, and both the improvement plan for safety during construction and the construction plan for securing airport runway's safety during tunnel passing by Shield-TBM propulsion were suggested.

A Case Study on Penetrating Hard Rock with Alternative Methods of Shield TBM for Weathered Layer in Subway Construction (지하철공사에서 풍화대용 쉴드 TBM의 경암 구간 굴진 시 대체공법에 대한 사례연구)

  • Park, Hyung-Keun;Ko, Won Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.623-629
    • /
    • 2010
  • Recently, the Shield TBM (Tunnel Boring Machine) construction method is used gradually to increase at the Tunnel Constructin site. However the design and application of the Shield TBM were carried out without sufficient investigation of the ground conditions in the construction site. Due to insufficient understanding to the corresponding equipment is frequently occurring unexpected construction cost and extension of a construction period. The most suitable alternative construction method was determined by analyzing tunneling rate, duration, construction cost of shield machine and tunneling data of alternative method. The result of the case study is suggested as follows. First, the accurate soil exploration on the construction site should be preceded to prevent from tunneling stoppage and schedule delay. Second, the most suitable selection of the shield machine to the ground conditions of the construction site should be executed based on the investigation. Third, the best alternative method for boring of hard rock section is 'hard rock blasting after open cut and cover method'.