• Title/Summary/Keyword: shell-tube heat exchanger

Search Result 115, Processing Time 0.027 seconds

Numerical Study of Heat Transfer Characteristics and Thermal Stress for Enamel coating Heat Exchanger in High Temperature Firing Process (법랑코팅 열교환기에서 고온 소성공정에 따른 열전달 및 열응력에 관한 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung;Lee, Jong-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • The purpose of this study is to obtain basic data on the optimization of firing process conditions for enamel coating in chemical heat exchanger. The method of increasing the firing temperature in order to apply enamel coating to shell & tube type heat exchanger was examined. The temperature distribution of the heat exchanger in the firing kiln was numerically calculated using a commercial CFD program. The structural safety of the heat exchanger was confirmed by thermal stress analysis using the FSI method. Numerical analysis and experimental results show that there is a problem of safety due to temperature difference when the heat exchanger at room temperature is directly put into a firing kiln at 860℃. Therefore, a preheating process is need to reduce the temperature difference. As in Case2 with fewer firing steps, the first stage preheating temperature of 445℃and the second stage firing temperature of 860 ℃are considered to be most suitable.

A Study of th Optimum of closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(II) - For Optimal Design of Heat Exchanger- (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 (II) -열교환기의 설계에 관하여 -)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.251-258
    • /
    • 1990
  • Optimal design of heat exchanger for closed CO$_{2}$ gas turbine plant of three processes selected from the result of cycle analysis have been discussed previously paper(I) has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel connection, tube diameter, shell side and tube side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial connections were all characterized according to the standardization or so. Search method was used to construct a computer simulation together with the calculation of heat transfer rate by logarithmic mean temperature difference method. Strength analysis of major parts was carried to examine their dimensions satisfying heat transfer and pressure loss requirements.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

A Study on Performance Characteristics due to the Degree of Superheat in Freon Refrigerating System - The Comparison of Heat Exchanger Types - (프레온 냉동장치의 과열도에 관한 성능 특성 연구 - 열교환기 타입별 비교 -)

  • Hong, Suck-Joo;Ha, Ok-Nam;Kwon, Il-Wook;Yun, Kab-Sig;Hong, Sung-In;Kim, Jin-Hyun;Kim, Yang-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.941-946
    • /
    • 2006
  • Nowadays heat exchangers that have been applied for freon refrigerating systems, a shell and tube type condenser, but because of their large size, large space for installation and more amount of refrigerants are needed. Therefore, in this study, we will find the most suitable operating condition through the comparison of performance between the shell & tube type and shell & disk type heat exchanger with R22. The experiments are carried out for the condensing pressure of refrigeration system from 1,500 kPa to 1,600 kPa and for the degree of superheat from 0 to $10^{\circ}C$ at each condensing pressure. As a result of experiment, if the shell & disk type heat exchanger is applied for R22 refrigerating systems, minimized input of refrigerants and space required for installation will be secured, which will have a great contribute to financial improvement for industry.

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

A Numerical Study on the Heat Transfer Performance of Single-Tube Annular Baffle System (단관 환형배플 시스템의 전열성능에 대한 수치해석)

  • Hong, Jeong-Ah;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.621-626
    • /
    • 2012
  • A new baffle configuration, an annular baffles, are considered in the present study as an alternative to reduce the excessive pressure drop associated with the conventional segmental ones in typical operating conditions. The heat transfer and pressure drops are numerically simulated for a single tube shell-and-tube model and compared against the conventional-baffle cases. Baffle blockage ratio and number of baffles are considered as the major variables for the present study specifying a fixed baffle spacing. It is found that the heat transfer increases 1.4~2.2 times without significant pressure loss compared to the bare tube cases and the goodness factor increases 1.35 times compared to the conventional-baffle model.

The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System (III) -The Comparison of Heat Exchanger Types- ($NH_3$ 냉동장치의 과열도에 관한 성능 특성 연구(III) -열교환기 타입별 비교-)

  • Lee Jong-In;Kim Yang-Hyun;Park Chan-Soo;Ha Ok-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1132-1138
    • /
    • 2005
  • Recently, production and use of freon substances are restrained due to depletion of ozone layer and global warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study is to find the optimal operating conditions by comparing the performance between the shell and tube type and shell and disk type heat exchangers using the ammonia refrigerant, and to verify the superiority of the shell and disk type heat exchanger that is not used in field of refrigeration and air conditioning. Finally, this study shows that the shell and disk type heat exchanger is applicable to the ammonia refrigeration system, and this system minimizes the refrigerant charge and installation space.

Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles (배플과 관군간의 적정 누설유동을 이용한 쉘-관 열교환기의 성능향상)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researcher's finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가)

  • Joo, Hong-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF