• Title/Summary/Keyword: sheet metals

Search Result 250, Processing Time 0.03 seconds

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes (Part1:Experiment) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(1부: 실험))

  • Lee, Jae-U;Keum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.3-11
    • /
    • 1998
  • During the forming process of sheet metals, the drawbead in the die face controls a restraining force so that the sheet flows into the die cavity with tension. In order to investigate a drawgbead restraining force and a pre-strain just after drawbeads which are essential in the finite element analysis of form-ing processes, the friction test and drawing test are employed. The experiments performed with a cir-cular bead stepped bead double circular bead and circular-and-stepped bead in the various forming conditions and bead sizes show that the restraining force varies linearly with the blank holding force. bead radius blank thickness and friction but the pre-strain nonlinearly does with them.

  • PDF

Springback Analysis in the Anisotropic Sheet Metal Forming Process with Axisymmetric Tools (이방성 금속판재 성형공정에서 블랭크 가압력에 따른 스프링백 해석)

  • 강정진;허영무;홍석관;송경식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.389-392
    • /
    • 2003
  • The deterioration of dimensional accuracy, caused by springback, is one of problems to always occur in sheet metal forming processes. As the demand for lighter and stronger metals increases, the development of improved forming processes settling the springback problem becomes more important. In this work, springback phenomena are investigated which occur in the press forming process with the anisotropic sheet metal and axisymmetric tools. The improvement possibility of dimensional accuracies, mainly, flatness, will be examined by applying blank holding forces as a method of springback control.

  • PDF

Prediction of springback on cold forming of Mg-alloy (Mg 합금 판재 냉간 성형품의 탄성회복량 예측)

  • Lee Y. S.;Kim M. C.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. However, study for sheet forming has not been a few because of low formability on room temperature. Formability and springback for AZ31 alloy sheet have been studied to develop the cold forming technology. The experimental and FE analysis were performed to analyzed the springback amounts by using a model of our on. A different three materials were used to investigate the effects of material characteristics. The springback amounts of Mg-alloy sheet formed part were larger than that of the other material.

  • PDF

A study on the Processing Variables of Rapid Prototyping using Sheet Metal (금속박판을 이용한 쾌속조형의 공정변수에 관한 연구)

  • 이상찬;박정남;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.42-45
    • /
    • 2003
  • The purpose of this study is the development or the extensive Rapid Prototyping Technique. which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with. the various specimens for tensile were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet metals lmm and 1.5mm thickness which is composed of the same ingredient. The tensile specimen were manufactured by changing the process variables, Such as electric current, pressure and resistance welding time for the Rapid Prototyping with metal sheet. And then by using the Taguchi method. The interrelation between the specimen and mechanical properties were determined and the system for the optimum process variable organized.

  • PDF

The Quality Evaluation on Resistance Spot Welding of 2024 Aluminum Alloy and Zinc Coated Steel (2024 Al합금과 아연도금강판의 점용접에 관한 품질평가)

  • 허인호;이철구;채병대
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.379-383
    • /
    • 2001
  • Resistance spot welding has been widely used in the sheet metal joining processes because of low cost, high productivity and convenience. Recently, automobile and aerospace industries are trying to replace partly steel sheets with aluminum alloy sheets. But in the case of dissimilar materials, to apply resistance spot welding has been known to be very difficult owing to the effect of melting temperature. On this study, an effort was made to apply spot welding of dissimilar sheet metals, 2024 aluminum alloy and zinc coated steel sheet, evaluate the spot weld quality with tensile-shear strength test and nondestructive evaluation technique, C-scan image methodology. In this study results, as the current below 11 kA, melting of materials is not achieved well. Also as the current exceeds to 13.5 kA, the more spatters happen at welded zone and tensile-shear strength lowered. So, the feasibility of C-scan image technique proposed in the study is found to be suitable evaluation method for resistance spot weldability.

  • PDF

Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper

  • Mohammadi, Bijan;Tavoli, Marzieh;Djavanroodi, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.957-969
    • /
    • 2014
  • Among severe plastic deformation methods, groove pressing is one of the prominent techniques for producing ultra-fine grained sheet materials. This process consists of imposing repetitive severe plastic deformation on the plate or sheet metals through alternate pressing. In the current study, a 2 mm pure Cu sheet has been subjected to repetitive shear deformation up to two passes. Hardness and tensile yield and ultimate stress were obtained after groove pressing. Fracture toughness tests have been performed and compared for three conditions of sheet material namely as received (initial annealed state), after one and two passes of groove pressing. Results of experiments indicate that a decrease in the values of fracture toughness attains as the number of constrained groove pressing (CGP) passes increase.

Material Information Extraction for Plate Parts Using Solid Models (솔리드 모델을 이용한 판재 부품의 소재 정보 추출)

  • Kim, Y.I.;Jun, C.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.344-350
    • /
    • 2006
  • A method for extracting material information on sheet metal parts from an assembly model is proposed. In order to estimate the cost and order the required sheet metals, their outline profiles, thicknesses, quantities, and etc. are needed. The proposed method consists of two steps: First, sheet metal parts are selected through a feature recognition process from an assembly model. Then, some geometric information for the parts is calculated. In the later step a flattening process of bent parts is included. The method is implemented on a commercial CAD/CAM system Unigraphics with API routines and applied to steam turbine generators and large scale boilers.

Study on the Compensation of Strain Measurement Error in Sheet Metals (박판 변형률 측정 오차의 보정에 관한 연구)

  • 차지혜;금영탁
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.594-599
    • /
    • 2004
  • In the sheet metal forming operations, the strain measurement of sheet panel is an essential work which provides the formability information needed in die design, process design, and product inspection. To measure efficiently complex geometry strains, the 3-dimensional automative strain measurement system, which theoretically has a high accuracy but practically has about 3~5% strain error, is often used. For eliminating the strain error resulted in measuring the strains of formed panels using an automated strain measurement system, the position error calibration method is suggested, which computes accurate strains using the grids with accurate nodal coordinates. The accurate nodal coordinates are calculated by adding the nodal coordinates measured by the measurement system and the position error found using the multiple regression method as a function of the main error parameters obtained from the analysis of strain error in a standard cube. For the verification, the strain distributions of square and dome cups obtained from the position error calibration method are compared with those provided by the finite element analysis and ASAME.

Numerical simulation for Deformation Shape of Declined Multilayer Metals Material (다층금속 경사재의 변형양태의 수치적연구)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.124-128
    • /
    • 2004
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coaling method of clad sheet metals is investigated, in which the FEM is applied and J2G(J$_2$-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Declined Multilayer Metals Materials are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

Filler effect of inner-structure bonded sheet metal in shearing process (내부구조재를 가진 중공형 접합판재의 전단가공특성에서 틈새효과에 관한 연구)

  • Kim, Ji-yong;Jung, Wan-jin;Kima, Jong-ho
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • While recent industrial structure is various, it is small quantity batch production structure, and products requiring of various functions are increasing. In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF