DOI QR코드

DOI QR Code

Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper

  • Mohammadi, Bijan (School of Mechanical Engineering, Iran University of Science & Technology) ;
  • Tavoli, Marzieh (School of Mechanical Engineering, Iran University of Science & Technology) ;
  • Djavanroodi, Faramarz (School of Mechanical Engineering, Iran University of Science & Technology)
  • Received : 2013.06.17
  • Accepted : 2014.07.20
  • Published : 2014.12.10

Abstract

Among severe plastic deformation methods, groove pressing is one of the prominent techniques for producing ultra-fine grained sheet materials. This process consists of imposing repetitive severe plastic deformation on the plate or sheet metals through alternate pressing. In the current study, a 2 mm pure Cu sheet has been subjected to repetitive shear deformation up to two passes. Hardness and tensile yield and ultimate stress were obtained after groove pressing. Fracture toughness tests have been performed and compared for three conditions of sheet material namely as received (initial annealed state), after one and two passes of groove pressing. Results of experiments indicate that a decrease in the values of fracture toughness attains as the number of constrained groove pressing (CGP) passes increase.

Keywords

References

  1. Agnew, S.R. and Weertman, J.R. (1998), "Cyclic softening of ultrafine grain copper", Mater. Sci. Eng. A, 244, 145-153. https://doi.org/10.1016/S0921-5093(97)00689-8
  2. Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012) "Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens.", Struct. Eng. Mech., 43(6), 823-834. https://doi.org/10.12989/sem.2012.43.6.823
  3. Anderson, T.L. (1994), Fracture mechanics: fundamentals and application, 2nd Edition, CRC Press, New York, Washington D.C., USA.
  4. Furukawa, M., Horita, Z. and Langdon, T.G. (2001a), "Substructures of deformation twins and twin intersections in a Ti-45Al-8Nb-2.5Mn alloy heavily deformed at room temperature", Mater. Sci. Eng. A, 299, 267-274. https://doi.org/10.1016/S0921-5093(00)01379-4
  5. Furukawa, M., Horita, Z. and Langdon, T.G. (2001b), "Application of equal-channel angular pressing", J. Mater. Res., 16, 583-589. https://doi.org/10.1557/JMR.2001.0084
  6. Iwahashi, Y., Horita, Z., Nemoto, M. and G Langdon, T. (1998), "The process of grain refinement in equalchannel angular pressing", Acta Mater., 46(9), 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1
  7. Khodabakhshi, F., Kazeminezhad, M. and Kokabi, A.H. (2010), "Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties", Mater. Sci. Eng. A, 527, 4043-4049. https://doi.org/10.1016/j.msea.2010.03.005
  8. Krishnaiah, A., Chakkingal, U. and Venugopal, P. (2005), "Applicability of the groove pressing technique for grain refinement in commercial purity copper", Mater. Sci. Eng. A, 410, 337-340.
  9. Krishnaiah, A., Chakkingal, U. and Venugopal, P. (2005), "Production of ultrafine grain sizes in aluminum sheets by severe plastic deformation using the technique of groove pressing", Mater. Sci., 52, 1229-1233.
  10. Kulyasovaa, O., Islamgalieva, R., Minglerb, B. and Zehetbauerb, M. (2009), "Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing", Mater. Sci. Eng. A, 503, 176-180. https://doi.org/10.1016/j.msea.2008.03.057
  11. Kunz, L., Lukas, P. and Svoboda, M. (2005), "Fatigue notch sensitivity of ultrafine- grained copper", Mater. Sci. Eng. A, 391, 337-341. https://doi.org/10.1016/j.msea.2004.09.052
  12. Lee, J.W. and Park, J.J. (2002), "Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement", J. Mater. Proc. Technol., 130-131, 208-213. https://doi.org/10.1016/S0924-0136(02)00722-7
  13. Lee, S.H., Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (2003), "Ultra grain refinement of commercial purity aluminum by a multi-stack ARB process", Mater. Tran., 44(7), 1376-1381. https://doi.org/10.2320/matertrans.44.1376
  14. Liao, F., Wang, W. and Chen, Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174. https://doi.org/10.12989/sem.2012.42.2.153
  15. Morattab, S., Ranjbar, K. and Reihanian, M. (2011), "On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing", Mater. Sci. Eng. A, 528, 6912-6918. https://doi.org/10.1016/j.msea.2011.05.074
  16. Mourad, A.H.I., Alghafri, M.J., Abu Zeid, O.A. and Maiti, S.K. (2005), "Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel", Nucl. Eng. Des., 235, 637-647. https://doi.org/10.1016/j.nucengdes.2004.10.005
  17. Niranjan, G.G. and Chakkingal, U. (2010), "Deep drawability of commercial purity aluminum sheets processed by groove pressing", J. Mater. Proc. Technol., 210(11), 1511-1516. https://doi.org/10.1016/j.jmatprotec.2010.04.009
  18. Park, K.T., Kwon, H.J., Kim, W.J. and Kim, Y.S. (2001), "Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process", Mater. Sci. Eng. A, 316, 145-152. https://doi.org/10.1016/S0921-5093(01)01261-8
  19. Patlan, V., Vinogradov, A., Higashi, K. and Kitagawa, K. (2001), "Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing", Mater. Sci. Eng. A, 300, 171-182. https://doi.org/10.1016/S0921-5093(00)01682-8
  20. Peng, K., Zhang,Y., Shaw, L.L. and Qian, K.W. (2009), "Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing", Acta Mater., 57(18), 5543-5553. https://doi.org/10.1016/j.actamat.2009.07.049
  21. Qin, E.W., Lu, L., Tao, N.R. and Lu, K. (2009). "Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins", Scripta Mater., 60, 539-542. https://doi.org/10.1016/j.scriptamat.2008.12.012
  22. Rafizadeh, E., Mani, A. and Kazeminezhad, M. (2009), "The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet", Mater. Sci. Eng. A, 515, 162-168. https://doi.org/10.1016/j.msea.2009.03.081
  23. Rajinikanth, V., Arora, G., Narasaiaha, N. and Venkateswarlu, K. (2008), "Effect of repetitive corrugation and straightening on Al and Al-0.25Sc alloy", Mater. Lett., 62(2), 301-304. https://doi.org/10.1016/j.matlet.2007.05.014
  24. Shin, D.H., Park, J.J., Kim, Y.S. and Park, K.T. (2002), "Constrained groove pressing and its application to grain refinement of aluminum", Mater. Sci. Eng. A, 328, 98-103. https://doi.org/10.1016/S0921-5093(01)01665-3
  25. Xua, C., Wang, Q., Zheng, M., Li, J., Huanga, M., Jia, Q., Zhua, J., Kunz, L. and Buksa, M. (2008), "Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equalchannel angular pressing (ECAP)", Mater. Sci. Eng. A, 475, 249-256. https://doi.org/10.1016/j.msea.2007.04.074
  26. Zhang, Z.F., Wu, S.D., Li, Y.J., Liu, S.M. M. Wang, Z.G. (2005), "Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing", Mater. Sci. Eng. A, 412, 279-286. https://doi.org/10.1016/j.msea.2005.08.221
  27. Zrnika, J., Kovarik, T., Novy, Z.M. and Cieslar, M. (2009), "Ultrafine-grained structure development and deformation behavior of aluminum processed by constrained groove pressing", Mater. Sci. Eng. A, 503, 126-129. https://doi.org/10.1016/j.msea.2008.03.050

Cited by

  1. Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process vol.708, 2017, https://doi.org/10.1016/j.msea.2017.09.085
  2. An Experimental Study of Fracture Toughness for Nano/Ultrafine Grained Al5052/Cu Multilayered Composite Processed by Accumulative Roll Bonding vol.140, pp.10, 2018, https://doi.org/10.1115/1.4040542
  3. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet vol.6, pp.3, 2014, https://doi.org/10.1088/2053-1591/aaf54f
  4. A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg-Li alloys using RSM vol.6, pp.7, 2014, https://doi.org/10.1088/2053-1591/ab1369
  5. Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes vol.31, pp.11, 2020, https://doi.org/10.1088/1361-6528/ab5cd7
  6. Influences of the constrained groove pressing on microstructural, mechanical, and fracture properties of brass sheets vol.7, pp.11, 2020, https://doi.org/10.1088/2053-1591/abc9f2
  7. Experimental and numerical study on effect of constrained groove pressing on mechanical behaviour and morphology of aluminium and copper vol.67, pp.None, 2014, https://doi.org/10.1016/j.jmapro.2021.05.008