• 제목/요약/키워드: sheet metal forming process

검색결과 428건 처리시간 0.019초

대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석 (Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process)

  • 정동원;김귀식;양동열
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II) (A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II))

  • 류기룡;노현철;송재선;박춘달;윤일채
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF

비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여) (Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section))

  • 신재현;김민수;서대교
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

Al합금의 사각용기 딥드로잉시 주름의 거동에 관한 연구 (A Study on the Behavior of Wrinkling in the Square Cup Deep Drawing of Al Alloy)

  • 고대림;정동원
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.276-282
    • /
    • 2009
  • Wrinkling in the flange and wall of a deep-drawn part is one of the major defects in sheet metal processes. Wrinkling is influenced by many factors, such as material properties, shape of the body, forming conditions, stress state and thickness, etc. It is difficult to analyze the wrinkling initiation and growth according to the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation even though small deviation of factors. In this study, the influence of wrinkling parameters, such as material properties (Al1050, Al5052), the blank holding force and the drawing depth on the wrinkling initiation and growth is investigated by using the experimental method and the dynamic explicit finite element analysis. From the results, it is shown that the dynamic explicit finite element method can be used effectively to prevent the wrinkling problems advancely in the deep drawing process. Also, there is a good agreement between the experimental result and the dynamic explicit finite element analysis.

극소형 원통컵의 드로잉성과 품질에 미치는 블랭크 홀딩력과 블랭크 직경의 영향 (Influence of Blankholding Force and Blank Diameter on the Drawability and Quality of Very Small Cylindrical Cups)

  • 이기성;김종봉;정완진;김종호
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.489-494
    • /
    • 2014
  • Micro forming is an appropriate process to manufacture very small metal parts which can be employed in the field of electronic devices or electrically controlled mechanical systems. The purpose of the current study was to investigate the influences of both blankholding force and blank diameter for the deep drawing of very small cups. It is essential to control the blankholding force because improper force can result in defects such as wrinkles in the flange or cracks in the corner of the drawn cups. In the current study blankholding force was controlled by springs connected to the blankholder of a press die. Exchangeable bushing dies with various die-corner radii were also used. To obtain the limit drawing ratio for each working condition several sizes of circular specimens were prepared using blanking tools. Beryllium copper(C1720) alloy sheet of $50{\mu}m$ thickness was chosen for the experiments. The maximum limit drawing ratio of 2.1 was achieved experimentally for the conditions of the blankholder force(BHF)=5.3kgf and Rd=0.3mm. Both thickness and hardness along the central section of drawn cups were measured and compared for different drawing conditions. It was found that the deviation of measured data in the thickness and hardness distribution increases with increasing blankholder force and blank diameter.

굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출 (A study on excavator front support parts to minimize springback defects)

  • 전용준;허영무;이하성;김동언
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석 (Springback Analysis of the Front Side Member with Advanced High Strength Steel)

  • 송정한;김세호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF

단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측 (Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect)

  • 김동욱;방성식;김민수;이형일;김낙수
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1239-1249
    • /
    • 2013
  • 본 연구에서는 zircaloy-4 판재에 대해 바우싱거 효과를 고려한 경화거동 예측모델을 구축했다. 금속소재 가공에서 인장 후 압축 시 항복응력이 감소한다. 이에 스프링백 해석 시 바우싱거 효과를 반드시 고려해야 한다. Simple shear 시험에서 적정 시편크기 및 적정 조임토크에 대한 결정법을 제시했다. 5 가지 재료에 대한 simple shear 시험을 통해 응력-변형률 곡선을 구했다. 또한 유한요소해석을 활용해 simple shear 하중-변위 곡선으로부터 유효응력-변형률 곡선으로 변환과정을 소개했다. 등방/운동성 경화 조합모델을 활용해 simple shear 순/역방향 시험을 모사했다. 이때 각 경화계수에 따른 하중-변위 곡선 변화를 관찰하고, zircaloy-4에 대한 경화계수를 결정했다.