• Title/Summary/Keyword: sheet metal forming process

Search Result 428, Processing Time 0.024 seconds

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.

Experimental Investigation of the Springback Characteristics of Tailor-Welded Strips in U-bending (용접판재의 U-벤딩시 스프링백 특성에 관한 실험적 연구)

  • 신장모;장성호;허영무;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.48-53
    • /
    • 2002
  • Sheet or plate bending is one of the most important industrial metal forming processes. And considerable attention has been focused on gaining a better understanding of many of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, not only the relationships between the springback and the process variables such as the geometry of the tools and thickness combination of workpiece but also the heat effect which affects the springback due to welding process was experimentally considered. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPI sheet, 0.8t${\times}$1.2t and 0.8${\times}$1.6t to investigate the effect of different thickness combination on the springback. Secondly, two different directionally welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. And three punch profile radii of 3, 9, and 15 m were used. Some cases of the experimental results were simulated by using a commercial FEM code, PAM-STAMP to compare the experimental results to the analytical ones.

  • PDF

The influence of punch and die shape radius in non-axisymmetric deep drawing products (비축대칭 디프 드로잉 제품에서 펀치 및 다이형상반경의 영향)

  • 박동환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.22-25
    • /
    • 1999
  • 'There are a lot of process variables, exerted influence on the formability of products, in deep drawing process. Particularly, it is important that the punch and die shape radius of the process variables. Though researches have been performed on the deep drawing of sheet metal forming, like this study, but it is insufficient the actual circumstances that researches for process variables of the non-axisymmetric deep drawing products. In this study, An effect on thickness distribution is grasped as alteration of the punch and die shape radius in the process of non-axisyrnmetric deep drawing products, and then the optimal punch and die shape radius were presented, they were verified by the numerical analysis method (FEM).

  • PDF

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

Study on the Characteristics of Drawbead Forces in Automotive Stamping Dies (자동차 스템핑 금형의 드로우비드력 특성에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.431-433
    • /
    • 2007
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining and opening forces was manufactured and the drawing forces of circular, square, and step drawbeads are measured. The drawbead restraining and opening forces of a circular drawbead are increased as its drawbead height is increased. Similarly, those of a square drawbead are increased as its height is increased and shoulder radii decreased. Also, those of a step drawbead are increased as its height and difference in their heights are increased.

  • PDF

Study on the Measurement of Restraining and Opening Forces in Drawbeads (드로우비드 상압력과 인출력 측정에 관한 연구)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • The drawbeads, which is used for controlling the flow of the sheet by imposing the tension and for preventing the springback in the sheet metal forming process, affects a lot the formability because of the differences in the restraint and opening forces according to the drawbead shapes and dimensions. In this study, the experimental device enabling to measure the drawbead restraining forces and the drawbead opening forces associated with various drawbead shapes and dimensions and their theoretical evaluation are introduced and verified through the experimental measurement of those of a circular drawbead.

  • PDF

An Effective Design Method of Stamping Process by Feasible Formability Diagram (가용 성형한계영역을 이용한 스템핑 공정의 효율적 설계방법)

  • Cha, Seung-Hoon;Lee, Chan-Joo;Lee, Sang-Kon;Kim, Bong-Hwan;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.108-115
    • /
    • 2009
  • In metal forming technologies, the stamping process is one of the significant manufacturing processes to produce sheet metal components. It is important to design stamping process which can produce sound products without defect such as fracture and wrinkle. The objective of this study is to propose the feasible formability diagram which denotes the safe region without fracture and wrinkle for effective design of stamping process. To determine the feasible formability diagram, FE-analyses were firstly performed for the combinations of process parameters and then the characteristic values for fracture and wrinkle were estimated from the results of FE-analyses based on forming limit diagram. The characteristic values were extended through training of the artificial neural network. The feasible formability diagram was finally determined for various combinations of process parameters. The stamping process of turret suspension to support suspension module was taken as an example to verify the effectiveness of feasible formability diagram. The results of FE-analyses for process conditions within fracture and wrinkle as well as safe regions were in good agreement with experimental ones.

Progressive Die Design for a Component of Double Sinks with Locally Thickened Wall (증육된 벽부를 가진 더블 싱크 제품의 프로그레시브 금형 설계)

  • Jang, W.S.;Choi, H.S.;Lee, H.D.;Gang, S.C.;Ahn, K.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.508-516
    • /
    • 2010
  • Thickening process in sheet metal forming is being increased to improve the strength as well as to reduce manufacturing process such as welding. This process can make it possible to obtain part locally thicker than that of initial sheet thickness. In this study, design method for manufacturing the component which has double sinks with local thickened wall is proposed. Deep drawing and upsetting processes are applied in order to form double sinks and thicken its walls. Used material is SPHC440 with the thickness of 2.0mm and initial blank size is determined on the basis of the final product. Distance between the center of double sinks and first drawing ratio to avoid fracture are the most significant factors during deep drawing. FE-analysis is implemented in order to determine the appropriate values. Progressive die is designed based on the proposed method and FE-analysis. As a result of experiment, locally thickened component can be manufactured, which has double sinks with the thickness about 3mm at the corner and wall.

Springback Characteristics of Tailor-Welded Strips in U-bending (레이저 용접 판재의 U-벤딩시 스프링백 특성에 관한 연구)

  • 장성호;신장모;서대교
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.440-448
    • /
    • 2003
  • Sheet or plate bending is one of the most important industrial metal forming processes. Considerable attention has been focused on gaining a better understanding of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, effect of the process variables such as the geometry of the tools, thickness combination of workpiece, and welding prcoessing on springback were experimentally clarified. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPl sheet, $0.8t{\times}1.2t$ and $0.8t{\times}1.6t$ to investigate the effect of different thickness combination on the springback. Secondly, two different directionly welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. Some cases of the experimental results were compared to the results simulated by using a commercial FEM code, PAM-STAMP and the theoretical results using the springback formula as well.

Investigation of a Novel Rubber-Forming Process Inducing Uniform Surface Pressure for the Fabrication of a Thin Bent Plate with Corrugated Structure (균일압력 유도에 의한 꺾임 구조를 가진 미세주름 박판구조물 성형을 위한 고무성형 공정연구)

  • Kim, Min-Hoon;Park, Sang-Hu;Jeong, Ho-Seung;Cho, Jong-Rae;Ha, Man-Yeung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.933-940
    • /
    • 2011
  • Thin sheets with a corrugated structure are generally used for the fabrication of heat exchangers for electronics, airplanes, and vehicles. However, it is difficult to fabricate corrugated structures, especially those with a bent angle, using the conventional stamping process because of its intrinsic formation mechanism. We propose a novel rubber-forming process for the effective pressing of the both tilted sides of a plate under the same pressure to form exact corrugated shapes. We use finite element analysis and experiments to study the rubber-forming process parameters, and we evaluate the maximum allowable bent angle for high-quality formation. We show that the proposed method is effective for the fabrication of bent plates with low cost.