• Title/Summary/Keyword: shearing surface

Search Result 186, Processing Time 0.021 seconds

Fundamental Study on the Effect of Grousers on the Soil Thrust of Off-road Tracked Vehicles (그라우저 효과를 고려한 야지궤도차량의 지반추력 평가연구)

  • Baek, Sung-Ha;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.33-42
    • /
    • 2018
  • When an off-road tracked vehicle travels, an engine thrust that is transmitted to the continuous track induces a shearing action on the soil-track interface. Consequently, the relative displacement known as slip displacement takes place on the soil-track interface, which develops an associated soil thrust acting as a traction force. For the loose or soft ground conditions, an excessively large slip displacement can be required for the development of the desired soil thrust which will make the tracked vehicle mobile and therefore the outer surface of the continuous track is generally designed to protrude with grousers. This paper fundamentally studied the effect of grousers on the soil thrust of off-road tracked vehicles. Based on the soil-track interaction theory, a new soil thrust assessment method that properly takes into account the effect of grousers was developed. Also, the soil thrust of off-road tracked vehicles equipped with a number of grousers was evaluated using the developed assessment method. The results showed that grousers increased the soil thrust of the continuous track, enhancing the overall tractive performance of off-road tracked vehicles. These effects were more obvious as the height of grouser increased and the spacing of grouser decreased; thus, it is concluded that the grouser which has smaller shape ratio (span of the grouser to a grouser height) significantly enhances off-road tracked vehicle's performance.

Effect of Attrition Scrubbing on the Recovery of Platinum Group Metals from Spent Automobile Catalytic Converters (자동차(自動車) 폐촉매(廢觸媒)로부터 백금족(白金族) 회수(回收)를 위한 어트리션 스크러빙의 효과(效果))

  • Kim, Wan-Tae;Kim, Hyung-Seok;Cho, Sung-Baek;Lee, Jae-Chun;Kim, Sang-Bae
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.28-36
    • /
    • 2008
  • The effect of attrition scrubbing on the recovery of platinum group metals (PGMs) from automobile catalytic converters has been investigated. Catalytic converters were first crushed into particles less than 2 mm and attrition scrubbed in the range of 60 min, and then they were sieved with several screens. The catalyst layer, $\gamma$-alumina, was dislodged from the surface of the supporting matrix into fine particles less than $45{\mu}m$ by attrition scrubbing. The fraction of fine particles less than $45{\mu}m$ increased as the residence time for attrition scrubbing increased. The composition of the fine fraction obtained at a residence time of 40 min was $CeO_2$ 19.3%, $ZrO_2$ 1.9% and PGMs 419 ppm. In the fine fraction, the recovery of y-alumina increased proportionally to the residence time. Simultaneously, the recovery rates of $CeO_2$, $ZrO_2$ and PGMs increased to 82.9%, 78.7% and 78.9%, respectively. The production of the fine fraction less than $45{\mu}m$ and the recovery of $\gamma$-alumina increased when the solid concentration and initial feed size increased. Therefore, the attrition scrubbing as the comminution and separation process was concerned to be effective for the recovery of catalyst layer from ceramic supporting matrix by physical impact and shearing action between particles in the scrubbing vessel.

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Effect of long-term organic matter application on physico-chemical properties in rice paddy soil -2. The effect of some physical properties of paddy field by the long-term application of rice straw and compost (논토양(土壤)의 이화학적(理化學的) 성질(性質)에 미치는 유기물(有機物)의 연용효과(蓮用效果) -II. 생고(生藁) 및 퇴비(堆肥) 연용(蓮用)이 논토양(土壤)의 몇가지 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Park, Keong-Ho;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • This experiment was carried out to investigate the effects of long-term applications of rice straw and compost on the physical and mechanical properties of paddy fields and the yearly variation of rice yield in Fluvio-Marine plain of Jeonbug series. Amounts of rice straw and compost applied in this experiment were 500kg/10a, 1,000kg/10a respectively, and the nitrogen levels were 0, 15 and 20kg/10a. This experiment were continued for 9 years from 1979 to 1987. The results are summarized as follows: 1. Clay and silt ratios were decreased but versa in sand ratio, by the long-term application of rice straw and compost. 2. Bulk density in the long-term application of organic matter was lower in surface soil of non-application than nitrogen application (15kg/10a) and in rice straw than compost. 3. Solid ratio went down, but liquid and gaseous ratio went up especially, by organic matter application liquid ratio were increased by compost and gaseous ratio were increased by in rice straw. 4. Aggregates of bigger than 2mm were increased by long-term application of organic matter, and the effects was better in rice straw than compost. Accumulative aggregate of 2mm was 66.5% in nitrogen of 15kg/ 10a with rice straw, which showed the increase of 9.1% in comparison with the non-application of nitrogen and organic matter. 5. Liquid limit, plastic limit and plastic index were high in order of rice straw, compost and control, and liquid index was lower in compost than in rice straw. 6. Cole value was higher in vertical than horizontal and highest in the application of rice straw with nitrogen of 15kg/10a. Cone and shearing resistance were lowest in the application of rice straw with nitrogen. In total vertical pressure friction was higher in the long-term application of organic matter than control. 7. The change of yield index was higher in the long-term application of compost than rice straw in non-nitrogen and it showed the yearly competitive variation between the long-term application of compost and rice straw in nitrogen of 10kg/10a. In nitrogen application of 20kg/10a, it was increased from 6th year by rice straw application.

  • PDF