• Title/Summary/Keyword: shear-wave velocity

Search Result 477, Processing Time 0.024 seconds

The geophysical survey and rock classification suitable for the design of a tunnel in urban area passing underneath the Gyeongbu Line(Railload) (경부선 직하부를 나란히 통과하는 도심지 터널에 있어서 지표물리탐사 및 암반등급 평가 사례 연구)

  • Lee Kun;Kim Eun-Duk;Sha Sang-Ho;Cha Young-Ho;Kim Tae-Young;Jung Doo-Suk;Hwang Nak-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.673-679
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the linear array microtremor technique which uses these noises as strong energy source. The result parameter of the survey is shear wave velocity profile which had been applied as an fundamental information for the determination of the rock support type in tunnel design. This study was the first case in Korea which utilized a surface geophysical technique yielding successful result in urban area especially under the existing rail ways. The quantitative relation between the shear wave velocity from this method and the rock mass rating(RMR) determined from the inspection of the cores recovered from the same boreholes showed high statistical relationship. These correlations were then used to relate the shear-wave velocity to RMR along the entire profile.

  • PDF

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh;Sung-Gyo, Chung;Hyeog-Jun, Kweon
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

A study on the flow characteristics of laminar wavy film (층류파형 액막의 유동특성에 관한 연구)

  • Kim, Jin-Tae;Lee, Gye-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.628-636
    • /
    • 1997
  • Flow visualization technique incorporating photochromic dye is used to study the flow characteristics of the gravity driven laminar wavy film. The film thickness and wave speed are successfully measured by flow visualization. As the inclination angle increases, the waves have higher peaks and lower substrate thickness. The measured cross stream velocity at the free surface is up to 10% of stream wise velocity, which shows enhanced mixing in the lump of the film. The measured stream wise velocity profiles are close to parabolic profile near the substrate and the peak but show significant velocity defect near the rear side of the wave. The measured wall shear rate distributions show good agreement with the previous workers' numerical results.

ON THE BOUNDS FOR WAVE STABILITY OF STRATIFIED SHEAR FLOWS

  • S. LAVANYA;V. GANESH;G. VENKATA RAMANA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.105-121
    • /
    • 2024
  • We consider incompressible, inviscid, stratified shear flows in β plane. First, we obtained an unbounded instability region intersect with semi-ellipse region. Second, we obtained a bounded instability regions depending on Coriolis, stratification parameters and basic velocity profile. Third, we obtained a criterion for wave stability. This has been illustrated with standard examples. Also, we obtained upper bound for growth rate.

Development of Site Classification System and Modification of Site Coefficients in Korea Based on Mean Shear Wave Velocity of Soil and Depth to Bedrock (기반암 깊이와 토층 평균 전단파속도를 이용한 국내 지반분류 방법 및 지반 증폭계수 개선)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.63-74
    • /
    • 2008
  • Site response analyses were performed based on equivalent linear technique using the local geologic and dynamic site characteristics, which include soil profiles, shear wave velocity profiles and depth to bedrock for 125 sites collected in Korean Peninsula. From the results of site response analyses, 2-parameters site classification system based on the combination of mean shear wave velocity of soil and depth to bedrock was newly recommended for regions of shallow bedrock depth in Korea. First, as the borders of bedrock depth (H) for site classification were determined as 10m and 20m, the soil sites were divided into 3 classes as $H_1$, $H_2$ and $H_3$ sites. And then, the 3 site classes were subdivided into 7 classes based on the mean shear wave velocity of soil ($V_{s,soil}$). The feasibility of new site classification system was verified and the representative site coefficients ($F_a$ and $F_v$) and design response spectrum were suggested by analyzing uniform trend and dispersion of site coefficients for each site class. The suggested site coefficients and the regression curves present the nonlinear characteristics of soils according to the change of rock outcrop acceleration with uniform trend effectively. From the comparison between the mean values of response spectrum which was acquired from the site response analysis and the suggested design response spectrum, there was a little difference in some of site classes and it was verified to adjust the integration interval to make it more suitable for the site condition in Korea.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

Liquefaction Characteristic of Pohang Sand Based on Cyclic Triaxial Test (진동삼축시험을 통한 포항 지역 사질토의 액상화 저항 특성 연구)

  • Hwang, Byongyoun;Han, Jin-Tae;Kim, Jongkwan;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.21-32
    • /
    • 2020
  • In this study, series of cyclic triaxial tests and shear velocity measurement were conducted using Pohang sand, which was taken from liquefaction observed area, to verify the liquefaction characteristics of Pohang. The cyclic resistance ratio(CRR) was derived based on the test results. A specimen was reconstituted into 40% and 80% relative density conditions and then a series of cyclic triaxial tests and shear-wave velocity measurement were conducted. As a result, the effect of particle distribution and relative density to liquefaction resistance was verified. The liquefaction resistance of Pohang sand was evaluated by comparing with other liquefaction resistance of sands from previous research. In addition, the liquefaction resistance curve from field observation data was used to verify the reliability of results from this study by measured shear-wave velocity.

Two-dimensional imaging of shear wave velocity in the soil site using HWAW method (HWAW방법을 사용한 지반의 전단파 속도 2-D 영상화)

  • Park, Hyung-Choon;Kim, Dong-Soo;Kim, Jong-Tea;Park, Hyun-Jun;Bang, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.7-13
    • /
    • 2008
  • To obtain a shear-wave velocity profile in geotechnical practice, various seismic investigation methods which have their own strength and weakness are being frequently used. Generally, geotechnical site have lateral variation of the properties, so it is needed to determine 2-dimensional shear wave velocity imaging of the site. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to determination of 2-D $V_s$ imaging. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. HWAW method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise. HWAW method determine detailed local $V_s$ profile because one experimental setup which consists of one pair of receivers with spacing of 1~3m is used to determine the dispersion curve of the whole depth. So, 2-D Vs imaging with relatively high resolution can be determined through a series of HWAW test. In order to estimate the applicability of HWAW method, field tests were performed in 4 sites. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

  • PDF

Sonic Velocity Determination using Data from Monopole and Dipole Sources (음파검층에서의 속도결정 - monopole및 dipole소스의 비교 -)

  • Kong, Nam-Young;Lee, Sung-Jin;Zhao, Weijun;Kim, Yeoung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.225-231
    • /
    • 2006
  • As a study of efficient velocity analysis in sonic log, several preexisting techniques have been adopted to the sonic data taken from model borehole in Kangwon National University, and the results were compared. For the data taken from monopole source, Slowness-Time Coherence method which is a common technique for nondispersive wave was used. For the data taken from dipole source, conventional STC and Tang's method(Tang et al., 1995) were used. From the good matches in the P and Stoneley wave velocities, we could confirm the effectiveness of STC computation. We also could find that shear velocity obtained from Tang's method were exactly matched with shear velocity obtained from monopole source, and that the velocity were within the range of S wave velocity values obtained from conventional STC application to dispersive flexural waves.

  • PDF