• Title/Summary/Keyword: shear-stress

Search Result 3,969, Processing Time 0.031 seconds

Comparison of analysis methods of estimating behavior of soil mass above rigid culvert (암거 상부지반의 거동 평가를 위한 해석법 비교)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.71-77
    • /
    • 2018
  • In order to estimate behavior of soil mass which is located straight up of reinforced concrete culvert, Ritz method and FEM were applied and arching effects between the soil mass and adjacent soil were considered for the analyses. Analysis results obtained from the Ritz method and finite element method were compared with analytical solution. In the case of estimating nodal forces considered in FEM, caution is needed that shear stress depending on depth from ground surface should be reflected regardless of local coordinate system. Comparing the displacements computed from Ritz method with those of the analytic solution, it is seen that as the power of assumed displacement function increases, differences between the computed displacements and those of analytic solution decreases. It seems that displacements of FEM becomes closer to those of analytical solution as the number of elements are increased. It is seen that stresses computed from the Ritz method don't get closer to those of the analytic solution as the power of assumed displacement function. Stresses from FEM become closer to those of analytic solution as the number of elements are increased. Comparing the analysis results from the Ritz method and FEM with those of analytic solution, it can be seen that FEM is more reliable than Ritz method.

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

Humeral Torque in Youth Baseball Pitchers: Implications for the Development of Little League Shoulder and Humeral Retroversion (청소년기 야구 투수의 상완골 회전력: 소아 야구 견 및 상완골 후염의 발달에 미치는 영향)

  • Kim Young-Kyu;Sabick Michelle B.;Torry Michael R.;Hawkins Richard J.
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.1
    • /
    • pp.62-70
    • /
    • 2003
  • Purpose: We examined the kinematics and kinetics of the shoulder in youth baseball pitchers in light of the mechanisms of development of little league shoulder and humeral retrotorsion. Materials and Methods: The joint kinematics and the net force and torque acting on the humerus were calculated in fourteen youth pitchers throwing in a simulated game. Results: The major force component acting on the humerus was a tensile force of 378$\pm$81 N that peaked just after ball release. The predominant torque on the humerus was an external rotation torque about the long axis of the humerus. This torque reached a peak value of 35.3$\pm$6.7 Nm about 73$\%$through the pitching motion. This torque is approximately 66$\%$ of the torque required to fracture of the adult humerus. Conclusions: The direction of the humeral torque was consistent with the development of increased humeral retrotorsion in the throwing arm. Shear stress arising from the high torque during the late cocking phase likely leads to deformation the relatively weak proximal humeral epiphysis. The external rotation torque applied to the humerus during the pitch also agrees with the proposed mechanism for development little league shoulder, which has been hypothesized to be due to rotational stresses acting on the epiphysis during the throwing motion.

  • PDF

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

A Study of Warm-Mix Asphalt's Bonding Properties on the Change of Asphalt Film Thicknesses (아스팔트 피막두께 변화에 따른 중온 아스팔트의 접착성질에 관한 연구)

  • Yoo, In-Sang;Cho, Dong-Woo;Hwang, Sung-Do;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.29-40
    • /
    • 2011
  • Warm-Mix Asphalt(WMA) technologies have been developed since 15 years ago, which are internationally and domestically concerned with energy-saving and environmental-friendly technologies in public and private sectors of highway engineering. The performance of asphalt mass is traditionally evaluated by the penetration, viscosity, or Superpave tests. This research, however, is focused more on the properties depending on asphalt film thicknesses instead of evaluating asphalt mass behaviors by those tests. For this approach, a new testing protocol and analysis method are described by the bonding properties on each film thickness. This testing method and analysis tool are borrowed from those of DSR Moisture Damage test and applied by using ARES. The analysis results indicate that there is a limit film thickness between $200{\mu}m$ and $400{\mu}m$, which causes significant changes of the properties. In addition, the results show that the property changes of Hot-Mix Asphalt(HMA) and WMA on the limit film thickness are also different. Therefore, it is suggested that the properties on thin film thicknesses between $200{\mu}m$ and $400{\mu}m$ should be considered in order to evaluate WMA properly.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

Deposition Optimization and Bonding Strength of AuSn Solder Film (AuSn 솔더 박막의 스퍼터 증착 최적화와 접합강도에 관한 연구)

  • Kim, D.J.;Lee, T.Y.;Lee, H.K.;Kim, G.N.;Lee, J.W.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.49-57
    • /
    • 2007
  • Au-Sn solder alloy were deposited in multilayer and co-sputtered film by rf-magnetron sputter and the composition control and analysis were studied. For the alloy deposition condition, each components of Au or Sn were deposited separately. On the basis of pure Sn and Au deposition, the deposition condition for Au-Sn solder alloy were set up. As variables, the substrate temperature, the rf-power, and the thickness ratio were used for the optimum composition. For multilayer solder alloy, the roughness and the composition of solder alloy were controlled more accurately at the higher substrate temperature. In contrast, for co-sputtered solder, the substrate temperature influenced little to the composition, but the composition could be controlled easily by rf-power. In addition, the co-sputtered solder film mostly consisted of intermetallic compound, which formed during deposition. The compound were confirmed by XRD. Without flux during bonding of solder alloy film on leadframe, the adhesion strength were measured. The maximum shear stress was $330(N/mm^2)$ for multilayer solder with Au 10wt% and $460(N/mm^2)$ for co-sputtered solder with Au 5wt%.

  • PDF

Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives (아크릴 및 에폭시 접착제의 화학적 구조에 따른 유리섬유 복합재료의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Choi, Jin-Yeong;Kwon, Dong-Jun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.