• Title/Summary/Keyword: shear-stress

Search Result 3,969, Processing Time 0.025 seconds

NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION (전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구)

  • Kim, S.Y.;Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.161-168
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

  • PDF

A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION (주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구)

  • Cha, K.H.;Kim, J.H.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.321-326
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flaw analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

  • PDF

Direct numerical simulations of the turbulent boundary layers over the rough walls (표면조도가 있는 난류경계층의 직접수치모사)

  • Lee, Jae-Hwa;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.379-381
    • /
    • 2011
  • Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over two-dimensional (2-D) and rod and three-dimensional (3-D) cube rough walls were performed to investigate the effects of streamwise spacing on the properties of the TBL The 2-D and 3-D roughness were periodically arranged in the downstream direction with pitches of px/k=2, 3, 4, 6, 8 and 10 and for the cube, the spanwise spacing is fixed to pz/k=2 with staggered array, where px and pz are the streamwise and spanwise spacings of the roughness and k is the roughness height. Inspection of the Reynolds stresses showed that except for px/k=2 and 3 over the 2-D rough walls, the effects of the surface roughness extend to the outer layer over the 2-D and 3-D rough walls and the magnitude of the Reynolds shear stress in the outer layer is increased with proportion to px/k. However, such results are contrary to the trends of form drag, roughness junction and roughness length against px/k, which showed the maximum values at px/k=8 and 4 over the 2-D and 3-D rough walls respectively.

  • PDF

Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade (중첩선과 단면형상을 고려한 축류 송풍기 날개의 최적설계)

  • Samad, Abdus;Lee, Ki-Sang;Jung, Sang-Ho;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.420-423
    • /
    • 2008
  • This present work is to find optimum design of a NACA65 axial fan blade with weighted average surrogate model. The numerical analysis by Reynolds-average Navier-Stokes equations with shear stress turbulence(SST) is discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The blade aerodynamic shape is modified by six design variables for the optimization. The blade profile as well as stacking line is modified to enhance blade total efficiency. Six design variables, airfoil maximum camber, maximum camber location, leading edge radius, trailing edge radius, lean angle at 50% span and lean angle at 100% span, are selected for blade profile to enhance the total efficiency. The PBA model which is basically weighted average of the basis surrogates is used to find the optimal design in the design space from the constructed response surface model for the objective function. By the optimization, the total efficiency is increased by 1.4%.

  • PDF

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

THE STUDY ON THE SEPARATED FLOW OF A HUMP USING RANSMODELING (RANS 모델링을 이용한 Hump 형상의 박리 유동에 대한 연구)

  • Lee, J.;Bae, J.H.;Jung, K.J.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • In this paper, separated flow characteristics is studied using the RANS(Reynold-averaged Navier-Stokes) modeling. The analysis is performed for the NASA's hump configuration which is the combination of a flat plate and a hump. This configuration was used in NASA's flow control workshop and it was one of validation cases for RANS and LES simulations. The separation occurs at the 65% of model length where a slot is positioned for the flow control. No flow control case and steady suction case are studied using RANS modeling. The Spalart-Allmaras model and the SST(Shear Stress Transport) model are applied and their accuracy are compared. To correlate CFD analysis with experimental data, the optimal boundary condition was investigated and the effect of a cavity around the slot is studied for the no flow case.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Experimental Study for the Mixing Effect of the Driven Bar on Rotating Flow in a Closed Cylinder (원통내 회전유동에서 회전봉의 형상이 혼합효과에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Kim, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • The experiment is conducted on the rapidly rotating incompressible flow within a confined cylinder using LDV(Laser Doppler Velocimetry). The configurations of interest are the flows between a rotating upper disk with a bar and a stationary lower disk enclosed within a cylinder. The flow is considered to be an axisymmetric undisturbed basic flow. The results show that the flow is strongly dependent on the radius and the shape of bar but is negligibly affected by the Reynolds number in turbulent flow. It is observed that in the lid-driven case the main forms near the wall as the Reynolds number increases. The thin bar causes the second axial flow due to the suction effect and the thick bar causes the main flow to be pulled toward the surface of the bar. The step bar shows the dual effect of the two. 1:2 tilt bar shows that the main flow distributes wider than the other cases in which interference occurs due step bar.

A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes (분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구)

  • Seo, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.