• Title/Summary/Keyword: shear-strengthening effect

Search Result 143, Processing Time 0.017 seconds

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Estimation of shear resistance offered by EB-FRP U-jackets: An approach based on fuzzy-inference system

  • S Kar;E.V. Prasad;Nikhil P. Zade;Parveen Sihag;K.C. Biswal
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.27-44
    • /
    • 2023
  • The current study targets to apply the adaptive neuro-fuzzy inference system (ANFIS) for the estimation of the shear resistance offered by the externally bonded fiber-reinforced polymer (EB-FRP) U-jackets. A total of 202 groups of data cumulated from previous investigations, were employed for the development and evaluation of the ANFIS model. A relative appraisal between the ANFIS predictions and the results of experiments has shown that the assessments by current ANFIS model are in good concurrence with the latter. In addition, assessment of the accuracy of the ANFIS model was done by relating the ANFIS predictions with the forecasts of eight extensively used design guidelines. Based on the examination of various performance measures, it has been derived that the adequacy of the ANFIS model is better than the available guidelines. A parametric investigation has additionally been done to reconnoiter the influence of individual parameters as well as their combined effects on the shear contribution of EB-FRP. Based on the observations made from the parametric study, it has been witnessed that the ANFIS model has incorporated the effect of different parameters more competently than the considered design guidelines.

Analysis of the in-plane shear behaviour of FRP reinforced hollow brick masonry walls

  • Gabor, A.;Ferrier, E.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.237-260
    • /
    • 2005
  • This paper presents an experimental as well as a numerical analysis of the in-plane shear behaviour of hollow, $870{\times}840{\times}100mm$ masonry walls, externally strengthened with FRP composites. The experimental approach is devoted to the evaluation of the effectiveness of different composite strengthening configurations and the methodology consists in the diagonal compression of masonry walls. The numerical study assesses the stress and strain state distribution in the unreinforced and strengthened panels using a commercial finite element code. The effect of FRP reinforcement on the masonry behaviour and the capability of modelling to forecast a representative failure mode of the unreinforced and reinforced masonry walls is investigated.

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

Seismic performance of RC frame structures strengthened by HPFRCC walls

  • Yun, Hyun-Do;Hwang, Jin-Ha;Kim, Mee-Yeon;Choi, Seung-Ho;Park, Wan-Shin;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.389-399
    • /
    • 2020
  • An infill wall made of high-performance fiber-reinforced cementitious composites (HPFRCC) was utilized in this study to strengthen the reinforced concrete (RC) frame structures that had not been designed for seismic loads. The seismic performance of the RC frame structures strengthened by the HPFRCC infill walls was investigated through the experimental tests, and the test results showed that they have improved strength and deformation capabilities compared to that strengthened by the RC infill wall. A simple numerical modeling method, called the modified longitudinal and diagonal line element model (LDLEM), was introduced to consider the seismic strengthening effect of the infill walls, in which a section aggregator approach was also utilized to reflect the effect of shear in the column members of the RC frames. The proposed model showed accurate estimations on the strength, stiffness, and failure modes of the test specimens strengthened by the infill walls with and without fibers.

Flexural Strengthening of Reinforced Concrete Beams Using Carbon Fiber Mesh (탄소섬유 메쉬를 사용한 철근콘크리트 보의 휨보강)

  • Seo, Soo-Yeon;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • The objective of this work is to study the flexural strengthening effectiveness of Carbon Fiber Mesh (CFM) in reinforced concrete beams. Flexural strengthening for a simply supported reinforced concrete (RC) beam using CFM is developed by bonding CFM to the soffit of the beam. In this experimental program, five medium-sized reinforced concrete beams strengthened with CFM are tested in bending to evaluate reinforcing effects of the CFM. The beams are designed to have high shear capacity so that expected dominant failure mode of specimens is bending. The reinforcing effect of CFM is small at crack initiation, but is considerable in flexural rigidity of the beam after crack initiation. In comparing the behaviors of strengthened and virgin beams each other, it is shown that the strength of RC beams can be enhanced by attaching CFM. A fairly good agreement between the measured values and the calculated ones is obtained at both the cracking strength and yield strength of the strengthened beams.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF