• Title/Summary/Keyword: shear-induced microstructure

Search Result 15, Processing Time 0.027 seconds

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Microstructure and Mechanical Properties of Sn-3.5wt.%Ag Solder with Bi Addition (Bi를 첨가한 Su-3.5wt.%Ag 땜납의 미세조직 및 기계적 성질)

  • Lee, Kyung-Ku;Baek, Dae-Hwa;Seo, Youn-Jong;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.239-245
    • /
    • 2001
  • Microstructure and mechanical properties of Sn-3.1 wt.%Ag-6.9 wt.%Bi system solders on Cu-substrate were studied. The Sn3.1 wt.%Ag-6.9 wt.%Bi alloy was designed by phase diagram and chemical properties and was prepared by melting in argon atmosphere. The mechanical properties of solder/Cu joints were examined by shear strength test, and also creep test. The microstructure of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy consists of Bi-rich phase and $Ag_3Sn$ precipitate in {\beta}-Sn$ matrix phase. The shear strength of the joint was decreased with aging treatment. Crack path under shear test was through the solder. Similar crack path change mode was observed at the creep test of solder/Cu joint. The creep behavior of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy represented the inverse primary creep behavior at all test condition. It is suggested that the inverse primary creep behavior is induced from Bi solute atoms in Sn-matrix. The creep resistance of Sn-3.1Ag-6.9Bi alloy is better than that of Sn-3.5 wt.%Ag alloy at all test conditions.

  • PDF

Through-Thickness Variation of Strain and Microstructure of AA1050 Processed by High Speed Hot Rolling (고속열간압연가공된 AA1050의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.492-496
    • /
    • 2008
  • The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at $510^{\circ}C$, while only recovery occurred in the other regions.

Through-Thickness Variation of Strain and Microstructure of AA5052 with Rolling Conditions During High Speed Hot Rolling (고속열간압연시 압연조건에 따른 AA5052의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.265-269
    • /
    • 2009
  • The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.

Effect of Shear Deformation During Drawing on Inhomogeneous Microstructures and Textures in High Purity Copper Wires After Annealing (고순도 구리 선재의 어닐링 후 불균질 미세조직과 집합조직에 미치는 신선 시 전단 변형의 영향)

  • Park, Hyun;Kim, Sang-Hyeok;Kim, Se-Jong;Lee, Hyo-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.861-869
    • /
    • 2018
  • To determine the origin of the inhomogeneous microstructure and texture observed in drawn and annealed high purity copper wires, two kinds of drawing process conditions and their influence was investigated. The regular condition, based on a symmetric die, and a condition designed intentionally to produce an inhomogeneous shear deformation using an asymmetric die were employed. The difference in intensity of <111>-<100> distributed texture between the two wires confirmed that the wire drawn under the asymmetric die condition experienced a higher amount of shear deformation. The extensive shear strain in the wire drawn under the asymmetric die condition gave rise to inhomogeneous primary and secondary recrystallization behavior. After annealing at $200^{\circ}C$, grains with <100> texture, which were larger than the surrounding recrystallized grains, were extensively present on one half circle of the wire drawn under the asymmetric die condition, while larger grains with <100> were sparsely observed around the middle region of the wire drawn under the regular condition. Interestingly, the area where the larger grains with <100> texture existed was identical to the area where the high shear strain occurred during drawing in both wires. During annealing at $400^{\circ}C$, grains with <112> texture started to grow abnormally at the center of both wires as a result of secondary recrystallization. After annealing at $900^{\circ}C$ grains with <112> due to secondary recrystallization occupied the entire region of the wire drawn under the regular condition. On the other hand, in the wire drawn under the asymmetric die condition and then annealed at $900^{\circ}C$, the <100> oriented grains as a result of the normal grain growth of the larger <100> grains which were observed after annealing at $200^{\circ}C$, coexisted with the abnormally grown <112> grains. These results indicate that dynamic recrystallization induced by the shear strain during drawing plays an important role in the inhomogeneity of the microstructure and texture of wires after annealing.

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations (다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발)

  • Yoon, J.H.;Huh, H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

A Study on Bonding Strength and Interfacial Structure of Copper-Stainless Steel Brazed Joint(ll) (동-스테인리스 강 브레이징 접합부의 계면조직과 접합강도에 관한 연구(ll))

  • Lee, U-Cheon;Gang, Chun-Sik;Jeong, Jae-Pil;Lee, Bo-Yeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.668-677
    • /
    • 1993
  • The microstructural and shear tests of STS304/, STS430/ and low-C steel/Cu joints brazed using Cu-P, Cu-P-Sn(four type) and Cu-P-Sn-Ag(three type) filler metals at 1003 and 1033K for 1.2ks in Ar atomsphere were performed. Interfacial microstructures were divided into three type ; first, reaction layer contained cracks second, dispersed layer without cracks third, dispersed layer and reaction layer contained cracks. The joints composed only of dispersed layer without cracks have the high shear strength of above 40-60 MPa and result in failure in copper base metal. Low shear strength and joint failure result from the formation of reaction layer which induced cracks. The reaction layer is a Fe-P compound. This tendency of microstructure and shear strength depends on the existence and/or nonexistence of Sn in filler metals as well as Ni (and Cr) in base metals.

  • PDF

Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents (Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화)

  • Yong-Jae Lee;Jae Gwan Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.