• Title/Summary/Keyword: shear-friction

Search Result 966, Processing Time 0.029 seconds

A Study on the Effect of Normal Stress on the Joint Shear Behavior (절리면 전단거동에서의 법선응력 영향 고찰)

  • Cho, Taechin;Suk, Jaewook
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • Shear behavior of joint plane has been investigated considering the magnitude of normal stresses and initial surface roughness. Shear strength of joint plane has been measured by performing the multi-stage shear test in which applied normal stress level has been increased stepwise. Multi-stage shear test within the specified normal stress range has been repeated and two types of strength parameter variation have been observed: type 1 - both cohesion and friction angle decrease, type 2 - cohesion decrease and friction angle increase. Trends of strength parameter variation for the three rock types, gneiss, granite and shale, have been investigated and the influence of initial roughness of joint plane on the sequential shear strength change for the repeated multi-stage shear tests also has been analyzed.

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory (비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

THEORETICAL STUDIES ON FRICTION DRAG REDUCTION CONTROL WITH THE AID OF DIRECT NUMERICAL SIMULATION - A REVIEW

  • Fukagata, Koji
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.96-106
    • /
    • 2008
  • We review a series of studies on turbulent skin friction drag reduction in wall-turbulence recently conducted in Japan. First, an identity equation relating the skin friction drag and the Reynolds shearstress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

Behavior of Deformation and Fracture in Friction Welded Materials of STS304 and SM15C (STS304 와 SM15C 이종마찰용접재의 변형 및파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.161-166
    • /
    • 1996
  • In this study behavior of deformation and fracture under static tensile load in friction welded dissimilar materials and necking 0phenomenon occuring at tensile yeilding point were shown. Fibrous zone with view of macroscope and dimple pattren with a view of microscope were observed at shear surface.

  • PDF

Effect of lubrication on the evolution of inhomogeneous textures in ferritic stainless steel sheets during hot rolling (페라이트계 스테인리스강의 열간 압연 시 불균일 집합조직에 미치는 윤활 효과)

  • Kang C. K.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.453-455
    • /
    • 2005
  • Ferritic STS 439 Steel sheet were deformed by hot rolling with and without lubricant. The effect of friction between roll and specimen on inhomogeneous texture was studied by means of EBSD, XRD texture analysis. The textures were compared with those of obtained by Taylor FEM simulation. High friction between roll and sheet gave rise to the formation of the inhomogeneous shear texture through thickness.

  • PDF

A CONVERGENCE RESULTS FOR ANTIPLANE CONTACT PROBLEM WITH TOTAL SLIP RATE DEPENDENT FRICTION

  • AMMAR, DERBAZI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.813-823
    • /
    • 2021
  • In this work, we present the classical formulation for the antiplane problem of a eletro-viscoelastic materialswith total sliprate dependent friction and write the corresponding variational formulation. In the second step, we prove that the solution converges to the solution of the corresponding electro-elastic problem as the viscosity converges to zero.

Shear Transfer in Normal and High Strength Concrete (보통강도 및 고강도 콘크리트의 전단전달)

  • Oh Byung Hwan;Kim Kwang Soo;Lee Jong Hoon;Han Seung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.585-590
    • /
    • 2001
  • Cracks in concrete can submit shear forces by virtue of the roughness of their interfaces. With regard to this roughness, the crack faces play an important role. By transmitting normal and shear stress across their faces, shear cracks contribute to shear resistance. This process is called shear transfer or more generally, shear friction. Both experimental and analytical program to investigate shear transfer mechanism in normal and high strength concrete were included in this study. The parameters investigated in push-off test included the concrete strength, the presence and amounts of steel stirrups, and aggregate size. Solution procedure based on the truss model was developed to analyze the shear transfer behavior. In general, it can be seen that the analytical results agree well with results of shear transfer test.

  • PDF

Evaluation of Friction Coefficient according to Environmental Temperature of Ultra high molecular weight polyethylene (초고분자량 폴리에틸렌의 환경온도에 따른 마찰계수 평가)

  • Lee, Jong Suk;Park, Jin Young;Lee, Bong Chun;Lee, Dong Hoon;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.257-258
    • /
    • 2018
  • PTFE(polytetrafluoroetylene) is widely used as representative sliding friction materials, but there could be difficulties in applying it to various industry fields by the shortage of carrying capacity under high facial pressure and by the change of friction coefficient according to the environmental conditions. Accordingly, this study was to do comparative analysis on the friction coefficient by environmental temperature at the same facial pressure of UHMWPE which was mainly used as sliding friction materials under high facial pressure. In addition, this study was to proceed with the double shear structure by using two test specimen in order to minimize the frictional forces.

  • PDF

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.