• Title/Summary/Keyword: shear waves velocity

Search Result 159, Processing Time 0.025 seconds

Laminar-Turbulent Transition Research and Control in Near-wall Flow

  • Boiko A.V.;Chun H.H.
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.10-16
    • /
    • 2004
  • A response of a swept wing boundary layer to a single free-stream stationary axial vortex of a limited spanwise extent is considered as an example of typical problems that one can find in laminar-turbulent transition research and control. The response is dominated by streamwise velocity perturbations that grow quasi-exponentially downstream. It is shown that the formation of the boundary layer disturbance occurs for the most part close to the leading edge. The disturbance represents itself a wave packet consisted of the waves with characteristics specific for cross-flow instability. However, an admixture of growing disturbances whose origin can be attributed to transient effects and to a distributed receptivity mechanism is also identified.

Boundary/Finite Element Analysis of the Seismic Wave Amplifications due to Nonhomogeneous Alluvial Deposits (비균질 퇴적층으로 인한 지진파 증폭의 경계/유한요소 해석)

  • 김효건;손영호;김종주;최광규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.463-470
    • /
    • 1998
  • The boundary/finite element analysis for the seismic wave amplifications due to nonhomogeneous alluvial deposits was performed in this study. For numerical analysis, the homogeneous linear elastic soil half-space was modeled by using the 3-node isoparametric boundary elements and the inhomogeneous alluvial deposit was modeled by using the 8-node isoparametric finite elements. The two elements at interface were coupled together by the equilibrium condition of the tractions and the compatibility condition of the displacements. As a prarmetric variable, the incident angle and the dimensionsless frequency of the SH, P and SV-waves and the shear wave velocity ratio and the mass density ratio between the half-space and the alluvial deposit were selected.

  • PDF

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

Frictional Wave Energy Dissipation Factor on Uniform Sloping Beach (일정경사면에서의 파에너지 바닥마찰손실계수)

  • Yoo, Dong-Hoon;Eum, Ho-Sik;Jang, Moon-Yup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Wave energy is dissipated mainly by friction on the seabed until the waves reach the surf zone. Many researchers have investigated the mechanism of wave friction and the bottom shear stress induced by wave motion at a certain point is now well estimated by introducing the wave friction factor related to the near bed velocity given by linear wave theory. The variation of wave energy or wave height over a long distance can be, however, estimated by an iteration process when the propagation of waves is strongly influenced by bed friction. In the present study simple semi-theoretical equation has been developed to compute the variation of wave height for the condition of wave propagation on a constant beach slope. The ratio of wave height is determined by the product of shoalng factor and wave height friction factor (frictional wave energy dissipation factor). The wave height estimated by the new equation is compared with the wave height estimated by the solution of numerical integration for the condition that the waves propagate on a constant slope.

The Shear Wave Velocity Analysis using Passive Method MASW in the Center of the Metropolis, Gyeongsan (Passive Method MASW 방법을 이용한 경산시 도심구간에서의 전단파 속도 분석)

  • Lee, Hong-Gyu;Kim, Woo-Hyuk;Jang, Seung-Ik;Lee, Seog-Kyu
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • Active method MASW(Multi channel Analysis of Surface Waves), which is one of the surface wave exploration methods, has the difficulties to supply enough shear wave velocity log, caused by short spread length and lack of low frequency energy. To make up this defect, the passive method MASW survey is taked and analysised in Daeku subway construction site, Jungpyung-dong Gyeongsan city. The passive method MASW using the microtremor, improve the quality of the overtone record by applying the azimuth correction caused offline sources. And combing with active overtone record which is acquired by same geometry has the benefits of improve shallow depth resolution and extend possible investigation depth. To take the optimized acquisition parameters, the 2m, 4m, and 6m geophone spacing is tested. And 2m spacing overtone image could make the reliable shear wave velocity log.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Implementation of Bender Element to In-situ Measurement of Stiffness of Soft Clays (연약지반의 강성 측정을 위한 벤더 엘리먼트의 현장 적용성 연구)

  • Mok, Young-Jin;Jung, Jae-Woo;Han, Man-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.37-45
    • /
    • 2006
  • Bender elements, composed of thin piezo-ceramics and elastic shims, have been used to measure shear wave velocities of specimens in laboratories. In a preliminary stage of their field applications, an in-house research of optimizing suitable bender elements and their geometrical arrangement has been carried out in a barrel of kaolinite-water mixture. Two types of measurement configuration, similar to cross-hole and in-hole seismic testing, have been implemented. prototype instrumented rods were penetrated into a soft clay layer in the west coast and excellent shear waves were recorded. Development of penetration device (mandrel) and associated instrumented rods are in progress for deeper investigation.

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF