• Title/Summary/Keyword: shear wall system

Search Result 398, Processing Time 0.024 seconds

Axial Direction Velocity and Wall shear Stress Distributions of Turbulent Steady Flow in a Curved Duct (곡관덕트에 난류정상유동의 축방향 속도분포와 벽면전단응력분포)

  • 이홍구;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.131-138
    • /
    • 2001
  • In this paper, an experimental investigation of characteristics of developing turbulent steady flows in a square-sectional $180^{\circ}$curved duct is presented. The experimental study using air in a square-sectional $180^{\circ}$ curved duct carryed out to measure axials direction velocity and wall shear stress distrbutions by using Laser Dopper Velocimeter(LDV) system with data acquistion and processing the system of FIND6260 softwere at 7 sections from the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) in $301^{\circ}$ intervals of a curved duct.

  • PDF

Lateral Drift Control Technique of High-Rise Shear Wall Core Structural System (고층 전단벽 코어구조시스템의 횡변위 제어방안)

  • Han, Seong-Baek;Kang, Myoung-Hee;Nam, Kyung-Yun;Lee, Seong-Su;Lee, Han-Joo;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • This study presents the efficient lateral drift control optimal technique that can control quantitatively lateral drift of high-rise structures. To this end, optimal design algorithm is formulated and then lateral drift control optimal program is developed. The 130 story shear wall core model is considered to illustrate the features of lateral drift control technique proposed in this study

  • PDF

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Seismic Capacity according to Structural System of High-rise Apartment (고층 아파트 구조시스템에 따른 내진성능 분석)

  • Lee, Minhee;Cho, So-Hoon;Kim, Jong-Ho;Kim, Hyung-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2019
  • The structural system of domestic high-rise apartments can be divided into two parts; the core wall system, which is composed of walls concentrated in the center and the shear wall system, which comprises a great number of walls distributed in the plan. In order to analyze the lateral behavior of each system, buildings with typical domestic high-rise apartment plans were selected and nonlinear static analysis was performed to investigate the their collapse mechanism. From the force-displacement relation derived from nonlinear static analysis, response modification factor was evaluated by calculating the overstrengh and ductility factor, which are important in the seismic response. The ductility of core wall system is small, but as it is governed by wind load, its overstrength is greatly estimated, and its response modification factor is calculated by the overstrengh factor. Due to a large number of walls, shear wall system has a large ductility, making the response modification factor considerably large.

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Seismic Analysis of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 지진해석)

  • 김태훈;박지홍;박재근;최강룡;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.180-187
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete shear wall subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete shear wall is verified by comparison of analysis results with reliable experimental results.

  • PDF