• Title/Summary/Keyword: shear wall buildings

Search Result 256, Processing Time 0.027 seconds

Seismic Performance Evaluation of School Building Reinforced by Circular-Opening Steel Shear Wall System (원형개구부가 있는 강판 전단벽 시스템을 적용한 학교 건축물의 내진성능평가)

  • Lee, Yu-Hyeon;Lee, Swoo-Heon;Lee, Hee-Du;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • After the Gyeongju earthquake, school buildings were designated as earthquake shelters. However, the ratio of designed for seismic of domestic school buildings is only 23.2% in Korea, and it is necessary to secure the seismic safety of those. Therefore, in this paper, a target building was selected before the seismic design criteria was established and the seismic performance of the building was evaluated. After the evaluation, reinforcement of the building was carried out using seismic retrofit systems which was previously tested. For this purpose, the evaluation was carried out using OpenSees program and the reliability of the seismic retrofit systems was also verified. In this way, we can more precisely reproduce the response of the building in case of actual earthquake and predict damage of the earthquake in the future.

Development of the Drift Design Method of High-rise Buildings using Weight Control Factors (중량 조절계수를 이용한 고층 건물 변위설계법 개발)

  • Park, Hyo Seon;Seo, Ji Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.285-294
    • /
    • 2005
  • Drift design is one of the core techniques in the structural design of high-rise buildings and resizing technique is regarded as a practical drift design method for high-rise buildings. In the resizing technique, the structural weight is re-distributed to minimize the target displacement without a change in structural weights. However, the structural weight determined from resizing algorithm is bound to the structural weight based on the preliminary design. Therefore, in this paper, a drift design method that can control the weight of the structure without causing drift control performance to deteriorate is proposed by incorporating the weight control factor in the formulation of resizing algorithm. The proposed drift design method is applied to the drift design of two frame-shear wall systems. The proposed drift design method, in this study, makes it possible to control both the drift and weight of a high-rise building.

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF

Seismic Performance Enhancement of Building Structures with Beam-end Rotation Type Dampers (보단부 회전형감쇠기를 이용한 건축구조물의 내진성능보강)

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.589-597
    • /
    • 2008
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module(VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls (벽체 단부의 횡보강근 양에 따른 변형능력의 평가)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Nonlinear Analysis of Nuclear Containment Wall Element using Standard 8-node Solid Element (표준 8절점 고체요소를 이용한 원전 격납건물 벽체요소의 비선형해석)

  • Lee Hong-Pyo;Choun Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.151-158
    • /
    • 2005
  • For the safety analysis of large structures such as nuclear containment buildings, we conventionally prefer to use analytical approach using finite element method rather than empirical test. Therefor, this paper is mainly focused to develop low-order solid finite element model with the elasto-plastic material model for the safety analysis of nuclear containment building. Drucker-Prager failure criteria in uncracked concrete and maximum tensile stress criteria in cracked concrete are used to model the constitutive behavior of concrete. The concrete material model takes into account the aspects of tensile strain, compression strength reduction of concrete and shear transfer to improve the accuracy of the finite element analysis. Finally, numerical simulation to compare the performance of the developed model with experimental results is employed. The numerical results in this study agree very well with the experimental data.

  • PDF

Structural Seperation of Unsymmetric Highrise Apartments (비정형 고층아파트에서의 구조체 분리 간격)

  • 정하선;현창국;윤영호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.56-60
    • /
    • 1989
  • It is well known that the symmetric buildings have higher resistance than the unaymetric ones do under seismic load. However, it is sometimes inevitable to build an unsymmetric structure due to the site conditions or architectural needs. The unsymmetric building has structural disadvantages under seismic load. In such a case the structural seperation joints are often used to avoid those disadvantages. This paper presents a method to determine the width of the seperation joints for unsymmetric, reinforced concrete apartments structured by walls and slabs only. The variables of the study were the ratio of shear-wall stiffness to the building length in the same directron, the building height and the story mass.

  • PDF