• Title/Summary/Keyword: shear wall buildings

Search Result 256, Processing Time 0.027 seconds

Collapse Mechanism of Ordinary RC Shear Wall-Frame Buildings Considering Shear Failure Mode (전단파괴모드를 고려한 철근콘크리트 보통전단벽-골조 건물의 붕괴메커니즘)

  • Chu, Yurim;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Most commercial buildings among existing RC buildings in Korea have a multi-story wall-frame structure where RC shear wall is commonly used as its core at stairways or elevators. The members of the existing middle and low-rise wall-frame buildings are likely arranged in ordinary details considering building occupancy, and the importance and difficulty of member design. This is because there are few limitations, considerations, and financial burdens on the code for designing members with ordinary details. Compared with the intermediate or unique details, the ductility and overstrength are insufficient. Furthermore, the behavior of the member can be shear-dominated. Since shear failure in vertical members can cause a collapse of the entire structure, nonlinear characteristics such as shear strength and stiffness deterioration should be adequately reflected in the analysis model. With this background, an 8-story RC wall-frame building was designed as a building frame system with ordinary shear walls, and the effect of reflecting the shear failure mode of columns and walls on the collapse mechanism was investigated. As a result, the shear failure mode effect on the collapse mechanism was evident in walls, not columns. Consequently, it is recommended that the shear behavior characteristics of walls are explicitly considered in the analysis of wall-frame buildings with ordinary details.

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Seismic assessment of slender high rise buildings with different shear walls configurations

  • Farghaly, Ahmed Abdelraheem
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • The present study dictates the behavior of shear wall under a seismic event in slender high rise buildings, and studies the effect of height, location and distribution of shear wall in slender high rise building with and without boundary elements induced by the effect of an earthquake. Shear walls are located at the sides of the building, to counter the earthquake forces. This study is carried out in a 12 storeys building using SAP2000 software. The obtained results disclose that the behavior of the structure is definitely affected by the height and location of shear walls in slender high rise building. The stresses are concentrated at the limit between the shear wall region and the upper non shear wall especially for shear walls without columns. Displacements are doubled between the shear wall region and the upper non shear wall especially for shear walls without columns.

Structural Shear Wall Systems with Metal Energy Dissipation Mechanism

  • Li, Guoqiang;Sun, Feifei;Pang, Mengde;Liu, Wenyang;Wang, Haijiang
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.195-203
    • /
    • 2016
  • Shear wall structures have been widely used in high-rise buildings during the past decades, mainly due to their good overall performance, large lateral stiffness, and high load-carrying capacity. However, traditional reinforced concrete wall structures are prone to brittle failure under seismic actions. In order to improve the seismic behavior of traditional shear walls, this paper presents three different metal energy-dissipation shear wall systems, including coupled shear wall with energy-dissipating steel link beams, frame with buckling-restrained steel plate shear wall structure, and coupled shear wall with buckling-restrained steel plate shear wall. Constructional details, experimental studies, and calculation analyses are also introduced in this paper.

Analysis of Shear Wall with Openings Using Super Element (슈퍼요소를 이용한 개구부를 가진 전단벽의 해석)

  • 이동근;김현수;남궁계홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.343-350
    • /
    • 2001
  • The box system, composed only of reinforced concrete walls and slabs, are adopted by many high-rise apartment buildings recently constructed in Korea. In the buildings, one or more relatively large openings are cut in a shear wall for functional reasons. The openings influence the internal stress of the shear wall and also the structural behavior. Therefore, it is necessary to use subdivided plate elements for accurate analysis of the box system with openings. But it would cost tremendous amount of analysis time and computer memory if the shear wall is subdivided into a finer mesh in the analysis of high-rise buildings. So, it is difficult to apply this modeling method to practical procedure. In this study, an efficient method is proposed for the efficient and accurate analysis of shear wall with openings. The proposed method used the super element and matrix condensations, fictitious beam technique.

  • PDF

Seismic force evaluation of RC shear wall buildings as per international codes

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.191-209
    • /
    • 2016
  • Seismic codes are the best available guidance on how structures should be designed and constructed to ensure adequate resistance to seismic forces during earthquakes. Seismic provisions of Indian standard code, International building code and European code are applied for buildings with ordinary moment resisting frames and reinforced shear walls at various locations considering the effect of site soil conditions. The study investigates the differences in spectral acceleration coefficient ($S_a/g$), base shear and storey shear obtained following the seismic provisions in different codes in the analysis of these buildings. Study shows that the provision of shear walls at core in low rise buildings and at all the four corners in high rise buildings gives the least value of base shear.

Seismic Performance Evaluation of Small-size Pilloti-type Reinforced Concrete Buildings using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 소규모 필로티형 철근콘크리트 건축물의 내진성능평가)

  • Yoo, Changhwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-199
    • /
    • 2016
  • Piloti-type building is one of typical vertical atypical buildings. These buildings can fail by weak-story or flexible-story mechanism on the first story. They should be designed by taking into account the special seismic load, but those less than six stories are not required to confirm the seismic performance from structural engineers in Korea. For this reason, small-size pilloti-type RC buildings need to be checked for seismic performance. Based on this background, this study performed nonlinear dynamic analysis using the PERFORM-3D for small-size pilloti-type RC buildings and assessed their seismic performance. Examples are two through four story buildings with and without walls in the first story. The walls and columns in the first story satisfied the target performance in the basic of flexural behavior due to quite a large size and reinforcement. However, wall shear demands exceed shear strength in some buildings. When designed for KBC2009, wall shear strength exceed shear demand in some buildings, but still does not in others. Consequently, wall shear must be carefully checked in both existing and new small-size pilloti-type RC buildings.

Optimal Design of Tall Residential Building with RC Shear Wall and with Rectangular Layout

  • Jinjie, Men;Qingxuan, Shi;Zhijian, He
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The objective of optimization is to present a design process that minimizes the total material consumption while satisfying current codes and specifications. In the research an optimization formulation for RC shear wall structures is proposed. And based on conceptual design methodology, an optimization process is investigated. Then optimal design techniques and specific explanations are introduced for residential buildings with shear wall structure, especially for that with a rectangular layout. An example of 30-story building is presented to illustrate the effectiveness of the proposed optimal design process. Furthermore, the influence of aspect ratio on the concrete consumption and the steel consumption of the superstructure are analyzed for this typical RC shear wall structure; and their relations are obtained by regressive analysis. Finally, the optimal material consumption is suggested for the residential building with RC shear wall structure and with rectangular layout. The relation and the data suggested can be used for guiding the design of similar RC shear wall structures.

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki;Adolfo Preciado;Pegah Amiri Motlagh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.591-609
    • /
    • 2023
  • In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.