• Title/Summary/Keyword: shear surface

Search Result 2,338, Processing Time 0.032 seconds

A new first shear deformation beam theory based on neutral surface position for functionally graded beams

  • Bouremana, Mohammed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.467-479
    • /
    • 2013
  • In this paper, a new first-order shear deformation beam theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded beams. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded beam which its material properties vary in the thickness direction is determined. Based on the present new first-order shear deformation beam theory and the neutral surface concept together with Hamilton's principle, the motion equations are derived. To examine accuracy of the present formulation, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending and free vibration responses of functionally graded beam are discussed.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

SHEAR BOND STRENGTHS BETWEEN ABRASION-RESISTANT DENTURE TEETH AND COMPOSITE RESINS (의치용 레진치와 수복용 복합레진 간의 결합강도에 관한 연구)

  • Kim, Mee-Lee;Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.201-212
    • /
    • 2002
  • This study investigated the shear bond strengths between abrasion-resistant denture teeth and composite resins according to surface treatments. Denture teeth for this study were Trubyte IPN teeth(Dentsply Inc., USA) with interpenetrating polymer network and Endura Posterio (Shofu Inc. Japan) of composite resin teeth, and restorative composite resins were Clearfil FII (Kuraray, Japan) of the self-cured composite resin and Z100(3M Dental Product, USA) of the light-cured composite resin. Five different surface treatments were evaluated: (1) $50{\mu}m\;A1_2O_3$ sandblasting: (2) #100 carbide paper; (3) chloroform; (4) retentive holes; and (5) no treatment. After surface treatments, denture teeth were examined by scanning electron microscopy(SEM), and the maximum shear bond strengths between abrasion-resistant denture teeth and composite resins were measured using Instron. The results were as follows; 1. IPN teeth treated with sandblasting had the highest shear bond strength, and Endura treated with sandblasting and carbide paper had significantly greater shear bond strength than with any other surface treatment. 2. Regardless or composite resins, the shear bond strength on Endura was greater than on IPN teeth. 3. Regardless of denture teeth, the shear bond strength of Clearfil FII was greater han of Z100. 4. In appearance of SEM, IPN teeth treated with sandblasting showed generalized roughness on the all of surface, however, carbide paper treatment resulted in partly rough. Endura treated with sandblasting and carbide paper showed similar surface characteristics. Wetting denture teeth surface with chloroform removed the debris and created a particle-free and smooth surface.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

A SHEAR BOND STRENGTH OF RESIN CEMENTS BONDED TO PRESSABLE PORCELAIN WITH VARIOUS SURFACE TREATMENTS

  • Lee Jong-Yeop;Im Eui-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.379-386
    • /
    • 2003
  • Statement of problem. Resin cements are widely used in adhesive dentistry specially on all ceramic restorations. It is needed to find out adequate bonding strength between different porcelain surface treatments, commercially available porcelains, and different resin cement systems. Purpose. The purpose of this study was to evaluate shear bond strength of resin cements bonded to porcelains in three different modalities; 5 different porcelain surface treatments, 3 different resin cement systems and 3 different commercially available pressable porcelains. Material and Method. This study consisted of 3 parts. Part I examined the effect of five different surface treatments on the pressable porcelain. Fifty discs (5 mm in diameter and 3 mm in height) of Authentic porcelain were randomly divided into 5 groups (n = 10). The specimens were sanded with 320 grit SiC paper followed by 600 grit SiC paper. The specimens were treated as follow: Group 1-Sandblasting (aluminum oxide) only, Group 2 - sandblasting/ silane, Group 3 - sandblasting/ acid etching/ silane, Group 4 - acid etching only, Group 5 - acid etching/ silane. Part II examined the shear bond strength of 3 different resin cement systems (Duolink, Variolink II, Rely X ARC) on acid etching/ silane treated Authentic pressable porcelain. Part 3 examined the shear bond strength of Duolink resin cement on 3 different pressable porcelains (Authentic, Empress I, Finesse). All cemented specimens were stored in distilled water for 2 hours and tested with Ultradent shear bond strength test jig under Universal Instron machine until fracture. An analysis of variance(ANOVA) test was used to evaluate differences in shear bond strength. Result. The shear bond strength test resulted in the following: (1) Acid etched porcelains recorded greater shear bond strength values to the sandblasted porcelains. (2) Silane treated porcelains recorded greater shear bond strength values to non-silane treated porcelains. (3) There was no significant difference between sandblasting/ acid etching/ silane treated and acid etching/ silane treated porcelains. However those values were much higher than other three groups. (4) The shear bond strength with Variolink II was lower than the value of Duolink or Rely X ARC. (5) The shear bond strength of Finesse was lower than the value of Authentic or Empress I.

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

EFFECTS OF SURFACE TREATMENT AND BONDING AGENTS ON SHEAR BOND STRENGTH OF THE COMPOSITE RESION TO IPS-EMPRESS CERAMIC (IPS-Empress 도재에 대한 콤포짓트 레진의 전단결합강도)

  • Yoon, Byeung-Sik;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.413-423
    • /
    • 1998
  • Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability, biocompatibility and translucency. This study evaluated the shear bond strength of composite resin to the new heat-pressed ceramic material (IPS-Empress System) depending on the surface treatments and bonding agents. The surface treatments were etching with 4.0% hydrofluoric acid, application of silane, and the combination of the two methods. Composite resin was bonded to ceramic with four kinds of dentin bonding agents(All-Bond 2, Heliobond, Scotch bond Multi-purpose and Tenure bonding agents). The ceramic specimen bonded with composite resin was mounted in the testing jig, and the universal testing machine(Zwick 020, Germany) was used to measure the shear bond strength with the cross head speed of 0.5 mm/min. The results obtained were as follows 1. The mean shear bond strength of the specimens of which the ceramic surface was treated with the combination of hydrofluoric acid and silane before bonding composite resin was significantly higher than those of the other surface treatment groups(p<0.05). 2. In the case of All-Bond 2 and Scotchbond Multi-purpose bonding agent group, the surface treatment methods did not influenced significantly on the shear bond(p>0.05). 3. Of the four bonding agents tested, the shear bond strength of Heliobond was significantly lower than those of other bonding agents regardless of the surface treatment methods(p<0.05). 4. The highest shear bond strength($12.55{\pm}1.92$ MPa) was obtained with Scotchbond Multipurpose preceded by the ceramic surface treatment with the combination of 4% hydrofluoric acid and silane.

  • PDF

Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites

  • Lee, Young Sil;Yoon, Kwan Han
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.86-92
    • /
    • 2015
  • Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.

Experimental Study on Shear Mechanism Caused by Textured Geomembrane (돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF