• 제목/요약/키워드: shear strengths

검색결과 686건 처리시간 0.024초

Cyanate methacrylate가 상아질 결합강도에 미치는 영향 (THE EFFECT OF CYANATE METHACRYLATE ON THE SHEAR BOND STRENGTHS TO DENTIN)

  • 김향경;최경규;최기운;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제32권3호
    • /
    • pp.236-247
    • /
    • 2007
  • 접착제의 술식을 간편하게 하고 효과적이며 안정적인 접착강도를 지닌 상아질 접착제를 개발하고자 isocyanate methacrylate의 농도를 달리해 상아질에 적용하여 전단결합강도를 측정하고 응집파괴양상을 분석, 평가하였다. Isocyanate methacrylate의 농도에 따라 0% (대조군), 2%, 4%, 6%, 8%, 10%, 및 12%의 7개 실험군으로 분류하였으며 , Instron (No.4466.USA)를 이용하여 복합레진의 전단 결합강도를 측정하고 Resin tag 및 응집파괴를 주사전자현미경으로 관찰해 다음 결론을 얻었다. 1. Cyanate methacrylate 8%군이 가장 높은 전단 결합강도는 나타내었으나 (33.62 KPa), 통계학적 유의성이 없었다 (P > 0.05). 2. Cyanate methacrylate 2% ,4% 및 6%군은 응집성파괴빈도가 대조군 (0%군)과 비교하여 높게 나타났다. 3. Cyanate menthacrylate군에서 레진tag의 길이는 짧게 나타났다. 이상의 연구의 결과로 cyanate methacrylate가 collagen과 반응하여 상아질 내로 침투를 방해하며 레진 tag의 길이를 짧게 하며 상아질의 유기성분과의 반응에 의하여 결합강도는 높아질 수 있으나, 상아질 자체의 강도가 낮아질 수 있어 상아질에 대한 결합강도의 실질적인 증가는 확인할 수 없었다.

나선형 철선못 접합부의 항복내력 및 강성 예측 (Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection)

  • 황권환;심국보
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권6호
    • /
    • pp.524-530
    • /
    • 2009
  • 기둥-보 구조와 경골목구조가 혼합된 공법은 경골목구조가 심벽 또는 평벽 요소로써 구조내력성능의 대부분을 차지하고 있다. 경골목구조의 수평전단내력성능은 면재에 대한 못접합부의 전단성능으로부터 예측할 수 있으며, 못접합부는 못의 휨내력성능을 이용하여 예측할 수 있다. 못접합에 의한 내력벽의 항복내력과 벽체 강성을 예측하기 위한 기초 연구로써 못의 휨내력성능을 이용한 못접합부의 항복내력 및 접합계수(초기강성)를 검토하였다. 못접합부 내력성능 예측에는 각각의 주부재에 대해 일반 지압내력 및 지압강성을 이용하고, 파스너인 나선형 철선못의 휨시험에 의한 휨항복내력성능을 이용하였다. 홈가공부의 지름에 의한 항복내력은 예측 정밀성이 우수하였으나, 접합계수는 낮게 예측되었다. 그 원인으로 주부재에서는 비중의 영향, 측면부재에서는 못머리지름에 의한 인발, 접합부에서는 못머리부의 지압 및 모멘트저항 등이 영향을 끼침을 알 수 있었으며, 이에 대한 차후 검토가 요구된다.

전단보강근이 없는 고강도 콘크리트 깊은 보의 전단특성 실험연구 (Experimental Study of Reinforced High-Strength Concrete Beams without Stirrups Considering Shear Behaviour)

  • 양성환;이동준
    • 한국건축시공학회지
    • /
    • 제14권4호
    • /
    • pp.336-342
    • /
    • 2014
  • 전단보강근이 없는 고강도 콘크리트 보의 전단능력을 평가하기 위하여 전단경간비 2.4인 시험체를 콘크리트 압축강도 60MPa 이상의 4단계별로 제작하여 파괴하중과 전단응력을 기존의 국내외 설계기준과 비교하였다. 특히 적용가능한 한계콘크리트 압축강도 70MPa 이상인 경우 전단응력을 기존 제안식을 보정하지 않고 적용하여 실험결과와 비교하였다. 고강도 콘크리트 보의 전단파괴 강도를 결정하여 기존의 설계기준결과와 차이를 분석하고 시공현장에서 고려해야할 특기사항을 제안하고자 한다.

Shear strength prediction of PRC coupling beams with low span-to-depth ratio

  • Tian, Jianbo;Shen, Dandan;Li, Shen;Jian, Zheng;Liu, Yunhe;Ren, Wengeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.757-769
    • /
    • 2019
  • The seismic performance of a coupled shear wall system is governed by the shear resistances of its coupling beams. The plate-reinforced composite (PRC) coupling beam is a newly developed form of coupling beam that exhibits high deformation and energy dissipation capacities. In this study, the shear capacity of plate-reinforced composite coupling beams was investigated. The shear strengths of PRC coupling beams with low span-to-depth ratios were calculated using a softened strut-and-tie model. In addition, a shear mechanical model and calculating method were established in combination with a multi-strip model. Furthermore, a simplified formula was proposed to calculate the shear strengths of PRC coupling beams with low span-to-depth ratios. An analytical model was proposed based on the force mechanism of the composite coupling beam and was proven to exhibit adequate accuracy when compared with the available test results. The comparative results indicated that the new shear model exhibited more reasonable assessment accuracy and higher reliability. This method included a definite mechanical model and reasonably reflected the failure mechanisms of PRC coupling beams with low span-to-depth ratios not exceeding 2.5.

사면파괴 하부 점토지반 비배수강도의 평가 (Estimation of Undrained Shear Strength of Clay under Failed Slope)

  • 이승현;한진태
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5572-5577
    • /
    • 2012
  • 사면파괴가 발생한 사면의 하부 연약지반에 대한 현장원치시험결과와 실내시험결과 그리고 강도 추정식에 의한 결과를 상호 비교분석해 보았다. 사면 하부연약지반에 대한 콘관입시험결과와 현장베인시험결과의 비교를 통해 결정된 연약지반의 콘계수값은 12였다. 콘관입시험자료로부터 콘계수 추정식을 적용하여 구한 연약지반의 비배수강도는 현장베인시험에 의한 그것보다 보수적인 값을 주었다. 압밀시험결과를 이용한 추정식을 통해 연약지반의 비배수강도를 추정하고 현장베인시험에 의한 비배수강도와 비교해 보았다. 세 가지 방법을 통한 추정결과에 따르면 Jamiolkowsky 방법에 의한 결과가 시험을 통해 구한 결과에 가장 근접하였으며 현장베인시험에 의한 비배수강도에 비해 0.88~1.23 범위의 값을 보였다.

연단거리를 변수로 갖는 오스테나이트계 스테인리스강(STS201) 일면전단 볼트접합부의 최대내력에 관한 해석연구 (Analysis Study on Ultimate Strength of Single-shear Bolted Connections with Austenitic Stainless Steel(STS201) with Varied End and Edge distances)

  • 차은영;황보경;이후창;김태수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권5호
    • /
    • pp.1-11
    • /
    • 2017
  • This study focused on the ultimate behaviors(ultimate strength and fracture mode ) of single shear bolted connection with austenitic sainless steel(STS201) and curling effect on the ultimate strength using finite element analysis based on test results. Main variables are end distance in the parallel direction to loading and edge distance in the perpendicular direction to loading. The validation of finite element analysis procedures was verified through the comparisons of ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence between test results and numerical predictions. Curling was observed in both test and analysis results and it reduced the ultimate strength of single- shear bolted connections with relatively long end distances. Strength reduction ratios caused by curling were estimated quantitatively by maximum 19%, 32%, respectively for specimens with edge distance, 48 mm and 60 mm compared with strengths of uncurled connections with restrained out-of-plane deformation. Finally, analysis strengths were compared with current design strengths and it is found that design block shear equations did not provide the accurate predictions for bolted connections with strength reduction by curling.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

니들펀칭 부직포 탄소/페놀 복합재료의 역학적 성질 및 열적 성질에 관한 연구 (Mechanical and Thermal Properties of Needle Punched Nonwoven Carbon/Phenol Composite)

  • 정경호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.50-53
    • /
    • 2000
  • The effect of punching density on the mechanical and thermal properties of nonwoven needle-punched carbon/phenol composite was studied. The carbonized preforms were farmed into composites with phenol resin. The interlaminar shear, tensile and flexural strengths were increased with increasing punching density. However, excessive punching density decreased interlaminar shear and tensile strengths. Erosion rate of carbon/phenol composite was decreased with increasing punching density

  • PDF

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

도재브라켓 접착면의 처리방식이 전단결합강도에 미치는 영향 (EFFECTS OF THE DIFFERENT CERAMIC BRACKET BASES ON SHEAR BOND STRENGTH)

  • 김진오;이기수
    • 대한치과교정학회지
    • /
    • 제24권4호
    • /
    • pp.957-967
    • /
    • 1994
  • The purpose of this study was to evaluate the effects of different bases of ceramic brackets on shear bond strength and to observe failure patterns of bracket bondings. Lower bicuspid brackets whose bases designed for the macromechanical and silane treated chemical bonding those for silane treated chemical bonding, those for micromechanical bonding, and those for macromechanical bonding were tested as experimental groups, and foil mesh-backed metal brackets as a control group. All the brackets were bonded with $Mono-Lok\;2^{(TM)}$ on the labial surface of extracted human lower bicuspids after etching the enamel with $38\%$ phosphoric acid solution for 60 seconds. The shear bond strengths were measured on the universal test machine after 24 hours passed in the $37^{\circ}C$ water bath. The gathered data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. The shear bond strengths of brackets for macromechanical and chemical bonding, those for chemical bonding, and those for micromechanical bonding were not different (p>0.05), but showed statistically higher than those of metal bracket and those of ceramic bracket for micromechanical bonding(p<0.05). The shear bond strengths of ceramic bracket for micromechanical bonding showed statistically lower than those of metal bracket(p<0.05). The enamel fractures and/or ceramic bracket fractures were observed in the cases of higher bond strength than that of metal bracket. These results supported that silane treated base of ceramic bracket show higher shear bond strength than that of metal bracket, and suggested that micromechanical form of ceramic bracket bases show higher shear bond strength than that of macromechanical form.

  • PDF