• Title/Summary/Keyword: shear strengths

Search Result 686, Processing Time 0.042 seconds

Shear Response Prediction of the Reinforced Concrete Beams using Truss Models for Membrane Element Analysis (막요소 해석에 사용된 트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.77-85
    • /
    • 2003
  • This paper presents a truss model that can predict the shear behavior of reinforced concrete (RC) beams subjected to the combined actions of shear and flexure. Unlike other truss models, the proposed truss model, TATM, takes into account the effect of the flexural moment on the shear strength of RC beams with different shear span-to-depth ratios. To check the successfulness of the proposed model experimentally obtained stress shear strain curves were compared to the predicted ones using the proposed truss model. Furthermore, the shear strengths of 170 RC test beams with variable shear span-to-depth ratios were compared to the shear strengths as given by the truss model reported in this paper.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile (표준 거칠기 단면의 실험적 검증에 의한 새로운 거칠기 계수 및 전단강도 기준식)

  • Jang, Hyun-Sic;Sim, Min-Yong;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.561-577
    • /
    • 2021
  • The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.

Nominal Torsional Moment Strength of RC Beam with Torsional Moment Strength of Concrete (콘크리트의 비틀림강도를 포함한 RC보의 공칭비틀림강도)

  • 박창규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.73-84
    • /
    • 2002
  • Nominal shear strength of concrete beam is the combined strength of concrete shear strength and steel shear strength in current design code. But Torsional moment strength of concrete is neglected in calculation of the nominal torsional moment strength of reinforced concrete beam in current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But the tensile stresses of concrete after cracking are neglected in bending and torsion in design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded to the nominal torsional moment strength of reinforced concrete beam. To verify the validity of the proposed model, the nominal torsional moment strengths according to CEB, two ACI codes(89, 99) and proposed model are compared to experimental torsional strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

[ $K_0$ ] consolidated triaxial tests for unsaturated weathered soils (불포화 풍화토의 $K_0$ 압밀 삼축압축실험)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.860-865
    • /
    • 2006
  • In order to predict the stability of slopes, it is important to evaluate shear strength of unsaturated soils. The triaxial tests were performed under $K_0$ conditions for unsaturated soils and the results were compared with those for saturated soils. In unsaturated soils, the secant modul and the shear strengths are larger than those of saturated soils because of matric suctions. However the shear strengths were not affected severely by stress conditions at consolidation.

  • PDF

Shear Strength of High Strength Concrete Beams with Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 전단강도)

  • 곽계환;박종건;정태영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • The purpose of this paper is to study on the shear strength of high strength concrete beams with steel fibrous. In general, the shear strength of reinforced concrete beams is affected by the compressive strengths of concrete( c), the shear span-depth ratio(a/d), the longitudinal steel ratio($\rho$ $\omega$), and shear reinforcement. An experimental investigation of the shear strength of high strength concrete beams with steel fibrous was conducted. In each series the shear span-depth ratio(a/d) was held constant at 1.5, 2.8, or 3.6, while concrete strengths were varied from 320 to 520, to 800kgf/$\textrm{cm}^2$. To verify the proposed equations the experimental results were compared with those from other researches such as equation of ACI code 318-95 or equation of Zsutty. To deduce equation for shear strength from experimental data carried out MINITAP program. According to the experimental results, the addition of steel fibrous has increased the deflection and strain at failure load, improving the brittleness of the high strength concrete.

Evaluation of Shear Performance of Rectangular NRC Beam (직사각형 NRC 보의 전단성능 평가)

  • Lee, Ha-Seung;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • In the NRC (New paradigm Reinforced Concrete) beam, steel forms, main angles used as main reinforcements, and shear angles used as basic shear reinforcements are welded and assembled in the form of vierendeel truss structures in a steel factory. After the NRC truss frame is installed at the site, additional main reinforcement and shear reinforcement are distributed. In this study, the shear performance evaluation of the NRC beam was conducted through shear tests in accordance with the type of shear reinforcement of the NRC beam (shear angle, inclined shear reinforcing bar, and U-type cover bar). As a result of the test, the initial stiffness was similar before the initial cracking of each specimen, and all specimens were shear fractured.The shear reinforcements of the specimens exhibited a yielding behavior at the time of the maximum sheat force, and the shear strengths of the specimens increased as the amount of reinforcement of the shear reinforcement increased. These results show that NRC shear reinforcements exhibit shear performance corresponding to their shear strength contribution. As a result of calculating the nominal shear strengths according to KDS 14 20 22, the experimental shear strengths of the NRC beam specimens with shear reinforcement was 37~146% larger than the nominal shear strengths, so It was evaluated as a safety side.

A STUDY OF THE BOND STRENGTHS OF COMPOSITE RESIN TO DENTIN SURFACES PREPARED WITH MICROABRASIVE (Microabrasive로 처리한 상아질표면에 대한 복합레진의 결합강도에 관한 연구)

  • Choi, Kyoung-Kyu;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.61-75
    • /
    • 1997
  • The bond strengths of composite resin to tooth dentin vary with the methods of cavity preparation and surface treatment. Recent developments in techniques of dentinal surface treatment have renewed interest in microabrasive as a means of tooth preparation, The purpose of this study was to determine the effects of a new method of cavity preparation on the bond of composite resin to dentin. Freshly extracted 144 healthy human third molars were used in this study. The dentin surfaces prepared with #600 SiC abrasive paper were divided into control and air abrasion groups according to the method of dentin surface preparation using different combinations of delivery pressure, time, and acid etching. The shear bond strengths were measured after the composite resin (Clearfil Photo Bright) was bonded to prepared dentin surfaces by light-curing using a dentin bonding system (All-bond 2), In addition, the average surface roughness was measured to investigate the effect of differently prepared dentin surfaces on the shear bond strengths. The surface changes of prepared dentin and the debonded dentin surfaces were observed with SEM (S-2300, Hitachi Co., Japan). The following results from this-study were obtained ; 1. There was no significant difference of shear bond strengths according to the changes of delivery pressure and time. 2. The shear bond strengths were lower than the control in the air abraded-only groups, but those of the additional acid-etched groups were higher than the control. 3. The shear bond strengths to all air-abraded surfaces were increased by acid etching. 4. The correlation between shear bond strengths and surface roughness was not certain, although the mean surface roughness of all air-abraded surfaces has increased evidently while it has slightly decreased for additional acid etching. 5. On SEM examination, the dentinal tubules were almost occluded in the air abraded-only groups, but those were opened in the additional acid-etched groups. 6. The debonded surfaces were showed adhesive failure mode in the air abraded- only groups, while those were showed mainly the mixed and cohesive failure mode in the additional acid-etched groups. These results suggest that the layer produced during cavity preparation or surface treatment with air abrasion must be removed for maximum bond strength of composite resin to dentin.

  • PDF

THE INFLUENCE OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF RESIN CEMENTS TO IN-CERAM CORE (In-Ceram 코아의 표면처리 방법에 따른 레진시멘트와의 전단결합강도에 관한 연구)

  • Yoon, Jeong-Tae;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2000
  • An increasing demand for esthetic restorations has led to the development of new ceramic systems. In-Ceram, a glass-infiltrated alumina ceramic has three to few times greater flexural strength than other ceramic glass material. Because of its high strength, In-Ceram has been suggested as inlay, crown, laminate veneer and core material for resin bonded fixed partial dentures. This clinical application requires a stable resin bond to In-Ceram core. The purpose of this study was to evaluate the shear bond strength between In-Ceram core and resin cements according to various surface treatments and storage conditions. The surface of each In-Ceram core sample was subjected to one of the following treatments and then bonded to Panavia 21 or Variolink II resin cement. ; (1) sandblasting with $110{\mu}m$ aluminum oxide powder, (2) sandblasting and silanization, (3) sandblasting and Siloc treatment, (4) sandblasting and Targis link application. Each of eight bonding groups was tested in shear bond strengths after the following storage times and thermocycling. ; A) 24 hours storage in distilled water at $37^{\circ}C$, B) 5 weeks storage in distilled water at $37^{\circ}C$ C) 5 weeks storage in distilled water at $37^{\circ}C$ and thermocycled 2,000 thormocycling for every 10 days(totally 10,000 thermocycting) in $5^{\circ}C-55^{\circ}C$ bath. The bond failure modes were observed with scanning electron microscope(SEM). The results were as fellows : 1 The shear bond strengths of sandblasting group were significantly lesser than the other groups after 24 hours water storage. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). The shear bond strengths showed a tendency to decrease in Variolink II bonding groups and to increase in Panavia 21 bonding groups. 3. After thermocycling, the shear bond strengths of all groups were significantly decreased(p<0.01) and Targis link group exhibited significantly greater strengths than the other groups(p<0.05). 4. Panavia 21 bonding groups exhibited significantly greater bonding strengths in sandblasting group(p<0.01) and silane group(p<0.05) than Variolink II bonding groups. 5. In observation of bond failure modes, Targis link group showed cohesive failure in resin part and silane group and Siloc group showed complex failure and sandblasting group showed adhesive failure between In-Ceram and resin.

  • PDF