• 제목/요약/키워드: shear strength of joints

검색결과 428건 처리시간 0.028초

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권4호
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • 제18권5호
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

The Interfacial Reaction and Joint Properties of Sn-3.5Ag/Cu (Sn-3.5Ag/Cu의 계면반응 및 접합특성)

  • Jung, Myoung-Joon;Lee, Kyung-Ku;Lee, Doh-Jae
    • Korean Journal of Materials Research
    • /
    • 제9권7호
    • /
    • pp.747-752
    • /
    • 1999
  • The interfacial reaction and joint properties of Sn-3.5Ag/Cu and Sn-3.5Ag-1Zn/Cu joint were studied. Modified double lap shear solder joints of Sn-3.5Ag and Sn-3.5Ag- lZn solder were aged for 60days at $100^{\circ}C$ and $150^{\circ}C$ and then loaded to failure in shear. The Sn-3.5Ag/Cu had a fast growth rate of the reaction layer in comparison with the Sn-3.5Ag-lZn at the aging temperature of $150^{\circ}C$ Through the SEM/EDS analysis of solder joint, it was proved that intermatallic layer was $Cu_{6}Sn_5$ phase and aged specimens showed that intermatallic layer grew in proportion to $t_{1/2}$, and the precipitate of $Ag_3Sn$ occur to both inner layer and interface of layer and solder. In case of Zn-containing composite solder, $Cu_{6}Sn_{5}$ phase formed at the side of substrate and $Cu_{5}Zn_{8}$ phase formed at the other side in double layer. The shear strength of the Sn-3.5Ag/Cu joint improved by addition of IZn. The strength of the joint increases with strain rate and decreases with aging temperature

  • PDF

Seismic Performance Evaluation of Existing Low-rise RC Frames with Non-seismic Detail (비내진상세를 가지는 기존 저층 철근콘크리트 골조의 내진거동평가)

  • Kim, Kyung Min;Lee, Sang Ho;Oh, Sang Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제17권3호
    • /
    • pp.97-105
    • /
    • 2013
  • In this paper, the a static experiment of on two reinforced concrete (RC) frame sub-assemblages was conducted to evaluate the seismic behaviors of existing RC frames that were not designed to support a seismic load. The specimens were a one span and actual-sized. One of them had two columns with the same stiffness, but the other had two columns with different stiffness values. As Regarding the test results, lots of many cracks occurred on the surfaces of the columns and beam-column joints for the two specimens, but the cover concrete splitting hardly occurred was minimal until the test ends. In the case of the specimen with the same stiffness offor the two columns, the flexural collapse of the left-side column occurred. However, in the case of the specimen with different stiffness values for of the two columns, the beam-column joint finally collapsed, even though the shear strength of the joint was designed to be strong enough to support the lateral collapse load. The nonlinear Nonlinear static analysis of the two specimens was also conducted using the uniaxial spring model, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

The practice of blind bolting connections to structural hollow sections: A review

  • Barnett, T.C.;Tizani, W.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.1-16
    • /
    • 2001
  • Due to aesthetic, economic, and structural performance, the use of structural hollow sections as columns in both continuous moment resisting and nominally pinned construction is attractive. Connecting the beams to these sections is somewhat problematic as there is no access to the interior of the section to allow for the tightening of a standard bolt. Therefore, bolts that may be tightened from one side, i.e., blind bolts, have been developed to facilitate the use of site bolting for this arrangement. This paper critically reviews available information concerning blind bolting technology, especially the performance of fasteners in shear, tension, and moment resisting connections. Also provided is an explanation of the way in which the results have been incorporated into design guidance covering the particular case of nominally pinned connections. For moment resisting connections, it is concluded that whilst the principle has been adequately demonstrated, sufficient data are currently not available to permit the provision of authoritative design guidance. In addition, inherent flexibilities in the connections mean that performance equivalent to full strength and rigid is unlikely to be achievable: a semicontinuous approach to frame design will therefore be necessary.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

A new analytical approach for optimization design of adhesively bonded single-lap joint

  • Elhannani, M.;Madani, K.;Mokhtari, M.;Touzain, S.;Feaugas, X.;Cohendoz, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.313-326
    • /
    • 2016
  • In this study the three-dimensional nonlinear finite element method was used to analyze the stresses distribution in the adhesive layer used to joint two Aluminum 2024-T3 adherends. We consider in this study the effect of different parameters witch directly affect the values of different stresses. The experimental design method is used to investigate the effects of geometrical parameters of the single lap joint in order to achieve an optimization of the assembly with simple lap joint. As a result, it can be said that both the geometrical modifications of the adhesive and adherends edge have presented a significant effect at the overlap edge thereby causing a decrease in peel and shear stresses. In addition, an analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the geometrical parameters. This approach can help the designers to improve the quality and the durability of the structural adhesive joints.

Modeling Parameters for Column-Tree Type Steel Beam-Column Connections (컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안)

  • An, Heetae;Kim, Taewan;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제27권1호
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.