• Title/Summary/Keyword: shear stability index

Search Result 54, Processing Time 0.021 seconds

Correlation between Lubrication Characteristics of Engine and Fuel Economy (엔진 윤활특성과 연비 상관성에 대한 연구)

  • Oh, JungJoon;Cha, SangYeob;Jeong, DoGon;Lee, JongJu
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2014
  • This paper presents the results of an experimental investigation of the correlation between the lubrication characteristics of an engine and its fuel economy. Improving the lubrication characteristics of the engine oil is one of the most efficient ways to improve a car's fuel economy. The methods to accomplish this include lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver. In addition, it is necessary to use different methods to reduce the friction to individual lubrication areas, because different lubrication regimes are used for different engine parts. The experimental investigation in this study is based on design of experiments ; this paper presents the results of a modified Sequence VID test, which is an ASTM standard test used to measure the effects of automotive engine oils on the fuel economy of passenger cars. The results demonstrate the effects of the following lubrication factors on the fuel economy : the low temperature cranking viscosity, high-temperature high shear (HTHS) viscosity, friction modifier, polymer type and shear stability index of the viscosity index improver. Moreover, this study involves an analysis of variance based on design of experiments. The test results show that the HTHS viscosity, friction modifier and shear stability index of the viscosity index improver are more effective than the other factors. Therefore, lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver should be considered to improve fuel economy.

Experimental study on the shear thinning effects of viscosity index improver added lubricant by in-situ optical viscometer

  • Jang, Siyonl
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.117-124
    • /
    • 2003
  • Elastohydrodynamic lubrication (EHL) film is measured under the condition of viscosity index improver added to base oil. In-situ optical contact method using the interference principle make the measuring resolution of ~5 nm possible and enables the measuring range all over the contact area of up to ~300 $\mu\textrm{m}$ diameter. What is more important to the developed method by the author is that the measurement of EHL film thickness is possible in the range from 100 nm to 2 $\mu\textrm{m}$, which is the regime of worst contact failures in precision machinery. Viscosity index improver (VII) is one of the major additives to the modem multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate (over $10^5 s^{-1}$) of general EHL contact regime. In order to exactly verify the VIIs performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to ~100 nm with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of ~5 nm, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

Shear Thinning Effects by VII Added Lubricant with In-Situ Optical Viscometer

  • Jang Siyoul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.215-223
    • /
    • 2003
  • Viscosity index improver (VII) is one of the major additives to the modern multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate $(over\;10^5\;s^{-1})$ of general EHL contact regime. In order to exactly verify the VII's performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to $\~100nm$ with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of $\~5nm$, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

  • PDF

A Case Study on Heavy Rainfall Using a Wind Profiler and the Stability Index

  • Hong, Jongsu;Jeon, Junhang;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, the vertical characteristics of wind were analyzed using the horizontal wind, vertical wind, and vertical wind shear, which are generated from a wind profiler during concentrated heavy rain, and the quantitative characteristics of concentrated heavy rain were analyzed using CAPE, SWEAT, and SRH, among the stability indexes. The analysis of the horizontal wind showed that 9 cases out of 10 had a low level jet of 25 kts at altitudes lower than 1.5 km, and that the precipitation varied according to the altitude and distribution of the low-level jet. The analysis of the vertical wind showed that it ascended up to about 3 km before precipitation. The analysis of the vertical wind shear showed that it increased up to a 1 km altitude before precipitation and had a strong value near 3 km during heavy rains. In the stability index analysis, CAPE, which represents thermal buoyancy, and SRH, which represents dynamic vorticity, were used for the interpretation of the period of heavy rain. As SWEAT contains dynamic upper level wind and thermal energy, it had a high correlation coefficient with concentrated-heavy-rain analysis. Through the case studies conducted on August 12-13, 2012, it was confirmed that the interpretation of the prediction of the period of heavy rain was possible when using the intensive observation data from a wind profiler and the stability index.

Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory

  • Hadji, Lazreg;Amoozgar, Mohammadreza;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.711-722
    • /
    • 2022
  • In this paper, hyperbolic shear deformation plate theory is developed for thermal buckling of functionally graded plates with porosity by dividing transverse displacement into bending and shear parts. The present theory is variationally consistent, and accounts for a quadratic variation of the transverse shearstrains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Three different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. The logarithmic-uneven porosities for first time is mentioned. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, aspect ratio and side-to-thickness ratio on the buckling temperature difference of imperfect FG plates.

The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall (강우시 사면안전율 변화를 이용한 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation (토양 손실 평가에 의한 식생매트의 허용 소류력 결정)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5956-5963
    • /
    • 2013
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. To evaluate soil loss, Terrestrial 3D LiDAR measurement is conducted and soil loss index are calculated from changes of bed elevation. Quantified evaluation for permissible shear stresses is conducted by graphical method for acting shear stresses and soil loss index. By the results of precision survey, changes of sub soil are limited to local range in stable cases and relatively large changes of sub soil which is similar to natural river bed are detected in unstable cases. From the study, evaluation of permissible shear stresses by ASTM D 6040 is avaliable in the failure mechanism and failure criteria by soil loss index.

Variation of Slope Stability under rainfall considering Train Speed (열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화)

  • 김정기;김현기;박영곤;신민호;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF