• 제목/요약/키워드: shear spring

검색결과 248건 처리시간 0.025초

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

지반의 상호작용을 고려한 전면기초의 해석기법 개발 (Development of Analysis Method for Mat Foundations Considering Coupled Soil Springs)

  • 이재환;정상섬;이준규
    • 한국지반공학회논문집
    • /
    • 제30권12호
    • /
    • pp.41-49
    • /
    • 2014
  • 본 연구에서는 기존 근사해석 프로그램의 간편함을 유지하면서 보다 정밀성이 확보된 3차원 근사해석기법(YS-MAT)을 개발하였다. 전면기초는 6개의 자유도를 가진 평면쉘 요소로 모델링하여 기초의 연성거동을 고려할 수 있도록 하였으며, 지반스프링의 상호작용을 고려할 수 있도록 하였다. 기존의 해석기법, 유한요소해석 및 현장계측값과의 비교 분석 결과, 본 해석기법이 대단면 전면기초의 침하 거동을 비교적 정확히 산정하는 것으로 판단되며, 이러한 검증을 토대로 실제 전면기초 예비설계에 적용 가능함을 확인할 수 있었다.

A 3-D RBSM for simulating the failure process of RC structures

  • Zhong, Xingu;Zhao, Chao;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.291-302
    • /
    • 2018
  • Rigid body spring method (RBSM) is an effective tool to simulate the cracking process of structures, and has been successfully applied to investigate the behavior of reinforced concrete (RC) members. However, the theoretical researches and engineering applications of this method mainly focus on two-dimensional problems as yet, which greatly limits its applications in actual engineering projects. In this study, a three-dimensional (3-D) RBSM for RC structures is proposed. In the proposed model, concrete, reinforcing steels, and their interfaces are represented as discrete entities. Concrete is partitioned into a collection of rigid blocks and a uniform distribution of normal and tangential springs is defined along their boundaries to reflect its material properties. Reinforcement is modeled as a series of bar elements which can be freely positioned in the structural domain and irrespective of the mesh geometry of concrete. The bond-slip characteristics between reinforcing steel and concrete are also considered by introducing special linkage elements. The applicability and effectiveness of the proposed method is firstly confirmed by an elastic T-shape beam, and then it is applied to analyze the failure processes of a Z-type component under direct shear loading and a RC beam under two-point loading.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

볼트의 변형을 고려한 강재 조립 합성보의 휨거동 (Flexural Behavior of Steel Composite Beam with Built-up Cross-section Considering Bolt Deformation)

  • 김성보;김훈겸;정경환;한만엽;김문영
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.43-50
    • /
    • 2008
  • 본 연구에서는 볼트의 변형을 고려한 강재 조립 합성보의 휨거동에 대한 해석기법 및 결과가 제시되었다. 볼트의 변형, 합성효과 및 접촉면의 마찰이 합성보의 휨거동에 끼치는 영향을 파악하였다. 볼트의 변형이 합성보의 휨거동에 끼치는 영향을 고려하기 위하여, 구조해석 프로그램인 ABAQUS의 Nonlinear Spring요소를 사용하였으며 볼트의 변형을 고려하지 않은 결과와 비교하였다. 유한요소 모델에 의해서 처짐, 휨응력, 전단응력이 계산되었으며 이런 결과는 완전 비합성보, 부분 합성보 및 완전 합성보의 해석 값과 비교되었다. 해석결과 합성보의 거동은 강재의 마찰보다 볼트의 갯수로 표현되는 합성률에 크게 영향을 받았다. 특히 합성률이 50%이상이 되면 볼트의 변형을 고려한 합성보의 휨거동은 완전합성보와 유사하게 나타났다.

실대형 모형 실험을 이용한 강관합성 말뚝의 수평 거동 특성 평가 (Assessment of Lateral Behavior of Steel-concrete Composite Piles Using Full-scale Model Tests)

  • 권형민;이주형;박재현;정문경
    • 대한토목학회논문집
    • /
    • 제29권5C호
    • /
    • pp.199-206
    • /
    • 2009
  • 본 연구에서는 수평하중을 받는 강관합성 말뚝의 역학적 특성을 평가하기 위하여 서로 다른 단면 특성을 가진 모형 말뚝에 대하여 실내 모형 실험을 수행하였다. 지반 반력의 효율적인 모사를 위하여 스프링 장치를 이용한 지반 반력 시스템을 개발하였으며, 축하중 및 수평하중을 독립적으로 재하할 수 있는 하중 재하 시스템을 적용하여 사용하중 상태에서의 말뚝의 수평방향 거동 특성을 평가하였다. 강관합성 말뚝은 기존의 현장타설 말뚝에 비하여 증가된 수평저항 특성을 보여주며, 강관 합성 효과에 의하여 강관 및 철근 콘크리트의 수치합 보다 큰 수평 극한강도를 발휘하는 것을 확인하였다. 또한, 전단 연결재의 사용에 따른 강관-콘크리트의 일체화 거동을 검토하였으며, 고강도 콘크리트의 사용에 따른 강관합성 말뚝의 하중 지지성능을 평가하였다. 이와 함께, 강관합성 말뚝의 강관에 의한 내부 철근망의 대체 가능성 여부를 평가하였다.

유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계 (Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method)

  • 이중현;이경훈;이선봉
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.483-490
    • /
    • 2016
  • 자동차 도어 래치는 스프링, 사출품, 소형 모터 등의 작은 부품들을 조립하여 제조된다. 이를 위해서는 각 부품의 정밀설계 및 조립기술이 요구된다. 도어 래치는 자동차의 문을 열리지 않게 고정시켜 운전자의 안전에 직접적인 영향을 미치는 중요한 역할을 한다. 따라서 본 연구에서는 자동차 도어 래치의 주요 구성요소인 커넥터 단자의 트리밍 시, 롤오버를 저감하고 적합한 유효전단면을 찾기 위한 연구를 수행하였다. 유한요소해석과 실험계획법의 직교배열을 통한 다구찌법을 이용하여 차량용 도어 래치커넥터 단자의 전단면 품질 향상을 위한 최적 설계변수를 설정하였다. 해석에 사용된 설계변수는 클리어런스, 곡률반경, 블랭크 홀딩력이며, 커넥터 단자의 재질은 C2600이다. 해석을 통해 제안된 최적 트리밍 공정 조건은 실험을 통해 검증되었으며, 최종제품의 전단면 형상과 치수가 성형해석 결과와 잘 일치하였다. 이상의 결과로부터 차량용 도어 래치커넥터 단자의 최종 롤오버 및 유효전단면 향상을 위한 최적화에 다구찌법을 유용하게 적용할 수 있음을 알 수 있으며, 트리밍 공정 이외의 다양한 금속성형공정에도 유용하게 적용할 수 있을 것으로 사료된다.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기 (A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film)

  • 송현철;김상종;문희규;강종윤;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF