• 제목/요약/키워드: shear ring

검색결과 133건 처리시간 0.024초

고압 이단 링블로워의 삼차원 유동해석 및 성능평가 (FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER)

  • 이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.45-48
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the midplane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

  • PDF

체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰 (Consideration on Friction Laws and their Effect on Finite Element Solutions in Buk Metal Forming)

  • 전만수;문호근;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.233-237
    • /
    • 1995
  • Effects of frictional laws on finite element solutions in bulk metal forming were investigated in this paper. The Coulomb friction and the constant shear friction law were compared through finite element anlayses of compression of ring and cylinders with different aspect rations, ring-gear forging and hot strip rollin under the isothermal condition. It has been shown that two laws may yield quite different results inthe case that the aspect ration of a process is large, for example , strip rolling and ring -gear forging and that the difference depends mainly on the aspect ratio and the friction.

  • PDF

고압 이단 링블로워의 삼차원 유동해석 및 성능평가 (FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER)

  • 이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

DEM을 이용한 조립재료의 전단거동 특성에 관한 연구 (Study on Shear Behavior Characteristics of Granular Material using DEM)

  • 조선아;정선아;이석원;조계춘;천윤철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.136-145
    • /
    • 2009
  • Factors influencing shear behavior of granular material include particle size, shape, distribution, relative density, particle crushing, etc. In this study, these factors are characterized by viewpoint of shear behavior using numerical analysis based on DEM. Geometrical particle shape is represented by a combination of small circular particles and influence of particle shape on crushing is studied through relative comparisons between clump (uncrushable) and cluster (crushable) models which are modeled using DEM. Also, particle shape is quantified by the dimensionless parameters such as circularity and convexity. The results indicate that particle shape indexes have a negative association with internal friction angle. Also, internal friction angle becomes reduced and failure envelop curve becomes nonlinear due to the particle crushing. It is also found that numerical results are quite good agreement with the experimental test conducted in this study.

  • PDF

횡단류 제트 와류구조의 3차원 토폴로지 (Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow)

  • 신대식;김경천
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

Fine-Blanking시 전단 단계별 변형 거동에 관한 연구 (A Study on the Steps of Shear Deformations Behavior of Fine-Blanking Process)

  • 이종구;박원규
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.26-33
    • /
    • 2002
  • One characteristic of Fine-Blanking is that the size and the direction of stress and strain are very complex in the plastic flow according to the condition of blanking. Especially, they are affected by the clearance of punch and die, by the force of blanking holder and by the force of counter punch. The purpose of this research is to how the deformation behavior in shear zone more clearly, based on Green & Cauch's large deformation theory. The deformation behavior and cracks were investigated in each step of shear, according to punch penetration increase, the use of V-indenter ring and the hardness of materials. This research found that the transforming behavior was the same as pure discretion and the cracks could be prevented when hardness is low.

고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석 (Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브 (Blade Type Field Vs Probe for Evaluation of Soft Soils)

  • 윤형구;이창호;엄용훈;이종섭
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.33-42
    • /
    • 2007
  • 연약지반의 강성평가는 샘플링(sampling)과 현장 접근에 따른 교란으로 인해 정확하게 평가하는 것이 상당히 어렵다. 이를 위해 개발된 링 타입 FVP를 이용하여 부산 신항에서 실험이 수행 되었다. 이 논문의 목적은 지반 관입시 발생하는 교란을 최소화 할 수 있도록 기존의 링 타입 FVP를 블레이드 타입 FVP로 개량하는 것이다. 블레이드 타입 FVP는 하단의 웨지 모양, 시료 교란, 트랜스듀서, 케이블의 보호, 그리고 케이블과 트랜스듀서간의 전자기적 커플링을 고려하여 설계하였다. 케이블 간 누화현상은 케이블의 접지와 통합을 통해 제거 할 수 있었다. FVP의 전단파 속도는 초기 도달 시간과 이동거리를 이용하여 간단하게 계산될 수 있었다. FVP 블레이드의 관입에 의한 교란 효과 조사 및 FVP를 통해 측정된 전단파 속도의 타당성을 확인하기 위하여 실내 대형 calibration 챔버를 이용하여 비교 시험을 수행하였다. 블레이드 타입 FVP는 30m 깊이까지 측정이 되었으며, 전단파 속도는 매 심도 10cm마다 측정이 되었다. 본 논문에서 제시된 개량된 블레이드 타입의 FVP는 대상 지반의 교란을 최소화 시키며 현장에서 직접 전단파 속도를 측정 할 수 있는 효과적인 장비라고 할 수 있다.

선미후류-프로펠러 상호작용을 고려한 유효반류 추정법 (Prediction of Effective Wake Considering Propeller-Shear-Flow Interaction)

  • 이창섭;이진태
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.1-12
    • /
    • 1990
  • 선미후류에 포함된 보오텍스 시스템과 프로펠러와의 상호작용을 이론적으로 해석하여 유효반류를 계산하는 방법을 제안하였다. 선미주위의 복잡한 유동을 Poincare의 방정식을 사용하여 수학적으로 표시하였고 임의의 점에서의 교란속도를 물체 표면에 분포되어 있는 쏘오스 및 보오텍스에 의한 유기속도의 표면적분과 유체중 위치하는 쏘오스 및 보오텍스에 의한 유기속도의 체적적분의 함으로 표시하였다. 이 식으로부터 유효속도(effective velocity)를 유체중 보오텍스에 의한 유기속도의 체적적분으로 정의하였다. 유체중의 보오텍스의 위치와 세기는 불균일한 호칭속도(nominal velocity)분포에 포함되어 있는 보오텍스로부터 프로펠러가 작동할 때의 유선변화를 고려하여 보오텍스 운동역학(vortex dynamics)을 만족하도록 결정된다. 이론을 검증하기 위한 계산예로써 축대칭 전단류(shear flow)중 원판형 추진장치가 작동할 때 프로펠러에 의한 유선변화 모형을 변화시켜 유효속도를 계산하였고 양력판 이론에 의한 값과 비교하였다.

  • PDF