• Title/Summary/Keyword: shear resistance

Search Result 1,162, Processing Time 0.02 seconds

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

Flexural behaviour and capacity of composite panels of light gage steel and concrete

  • Shi, L.;Liu, Y.;Dawe, J.L.;Bischoff, P.
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.397-418
    • /
    • 2009
  • Eight panel specimens were tested in one-way bending to study the behaviour and capacity of composite slab joists consisting of cold-formed steel C-sections and concrete. Various shear transfer mechanisms were implemented on the C-section flange embedded in the concrete to provide the longitudinal shear resistance. Results showed that all specimens reached serviceability limit state while in elastic range and failure was ductile. Shear transfer achieved for all specimens ranged from 42 to 99% of a full transfer while specimens employed with shear transfer enhancements showed a greater percentage and therefore a higher strength compared with those relying only on surface bond to resist shear. The implementation of pre-drilled holes on the embedded flange of the steel C-section was shown to be most effective. The correlation study between the push-out and panel specimens indicated that the calculated moment capacity based on shear transfer resistance obtained from push-out tests was, on average, 10% lower than the experimental ultimate capacity of the panel specimen.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

Shear Resistance of CIP Anchors under Dynamic Loading: Reinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 철근보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Roh, Jin Kyung;Ju, Ho Jung;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • In this study, an experimental study was performed to evaluate the shear resistance of cast-in-place(CIP) anchors reinforced with hairpin and stirrup bars under static and dynamic loads. The reinforcement was developed using D6 bars, and the anchors were installed with 20mm diameter and 120mm edge distance. Three tests were conducted for each type of reinforced anchor under static and dynamic shear load with a pulsating frequency of 1 Hz, respectively. It was found that the strength of hairpin-reinforced anchor was affected by the concrete cover and the dynamic tests showed no capacity reduction of anchors compared with static tests. The stirrup-reinforced anchor showed little increase of resistance compared with unreinforced anchor and the resistance under dynamic loading showed nearly same strength by static loading.

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

  • Hwang, Jin-Ha;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kang, Thomas H.K.;Pan, Zuanfeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.53-63
    • /
    • 2016
  • Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of concrete compressive strength, fiber volume fraction, and prestressing force level. Their localized behavior around the critical shear cracks was measured by a non-contact image-based displacement measurement system, and thus their shear deformation was thoroughly investigated. The tested SFRPSC members showed higher shear strengths as the concrete compressive strength or the level of prestress increased, and their stiffnesses did not change significantly, even after diagonal cracking due to the resistance of steel fibers. As the level of prestress increased, the shear deformation was contributed by the crack opening displacement more than the slip displacement. In addition, the local displacements around the shear crack progressed toward directions that differ from those expected by the principal strain angles that can be typically obtained from the average strains of the concrete element. Thus, this localized deformation characteristics around the shear cracks should be considered when measuring the local deformation of concrete elements near discrete cracks or when calculating the local stresses.

Theoretical Models for Predicting Racking Resistance of Shear Walls (전단벽의 전단성능 예측 모형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.96-105
    • /
    • 2002
  • Shear wall is the most important component resisting lateral loads imposed to a building by wind or earthquake. In shear walls, lateral load applied to framing is transmitted to sheathing panel through nailed joints between sheathing and framing so that the load is resisted by in-plane shear strength of sheathing. Therefore, nailed joints are the most basic and important component in the viewpoint of stiffness and strength of shear walls. In this study, stiffness and strength of single nailed joint were measured by single shear tests of nailed joints and used as input for theoretical models developed to estimate racking behavior of shear walls. And shear walls were tested to check the accuracy of theoretical models estimating racking resistance of shear walls. Stiffness of nailed joint was affected by grain direction of stud but direction of sheathing panel had little effect. Behavior of nailed joint and shear walls under lateral loads could be represented by three lines. Theoretical model II was more accurate than theoretical model I in estimating racking behavior of shear wall under loads.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.