• 제목/요약/키워드: shear resistance

검색결과 1,170건 처리시간 0.027초

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

Flexural behaviour and capacity of composite panels of light gage steel and concrete

  • Shi, L.;Liu, Y.;Dawe, J.L.;Bischoff, P.
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.397-418
    • /
    • 2009
  • Eight panel specimens were tested in one-way bending to study the behaviour and capacity of composite slab joists consisting of cold-formed steel C-sections and concrete. Various shear transfer mechanisms were implemented on the C-section flange embedded in the concrete to provide the longitudinal shear resistance. Results showed that all specimens reached serviceability limit state while in elastic range and failure was ductile. Shear transfer achieved for all specimens ranged from 42 to 99% of a full transfer while specimens employed with shear transfer enhancements showed a greater percentage and therefore a higher strength compared with those relying only on surface bond to resist shear. The implementation of pre-drilled holes on the embedded flange of the steel C-section was shown to be most effective. The correlation study between the push-out and panel specimens indicated that the calculated moment capacity based on shear transfer resistance obtained from push-out tests was, on average, 10% lower than the experimental ultimate capacity of the panel specimen.

주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화 (Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete)

  • 김길희
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.639-648
    • /
    • 2006
  • 전단 경간비를 실험 변수로 하여 철근콘크리트 보에 대한 1방향 단조재하의 전단실험을 실시하였다. 실험에 병행하여 실시한 유한요소 해석과 실험결과를 기초로 전단 경간비가 작은 보의 전단내력을 구하는 해석 방법과 주근의 부착작용의 효과를 고려한 crooked main strut과 sub strut으로 구성되는 새로운 매크로 모델을 제안하였다. 그 결과 전단 경간비가 0.75 이하에서 본 연구에서 제안한 매크로 모델이 형성 가능하다는 것과 콘크리트 압축강도의 유효계수를 0.75로 하였을 때 실험 결과와 해석 결과가 가장 잘 일치함을 확인하였다.

이방압밀이 흙의 강도에 미치는 영향 (Effects of Anisotropic Consolidation on Strength of Soils)

  • 강병희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구 (A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application)

  • 최일동;박지연;김재원;강문진;김동철;김준기;박영도
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

선설치앵커의 동적 전단하중에 대한 저항강도: 철근보강 앵커 (Shear Resistance of CIP Anchors under Dynamic Loading: Reinforced Anchor)

  • 박용명;강문기;노진경;주호중;강충현
    • 한국강구조학회 논문집
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 2014
  • 본 연구에서는 헤어핀 보강 및 스트럽 보강 선설치앵커의 정적 및 동적 전단하중에 대한 저항강도 평가를 위한 실험을 수행하였다. 보강철근은 D6 이형철근을 사용하였으며 연단거리 120mm의 직경 20mm 앵커에 대해 정적 하중과 1Hz의 편진하중으로 각각 3개의 시험체에 대해 실험을 수행하였다. 헤어핀 보강 앵커는 헤어핀의 덮개가 강도에 직접 영향을 미치는 것으로 확인되었으며, 정적 대비 동적하중에서 강도의 저하는 없는 것으로 평가되었다. 스트럽 보강 앵커는 비보강 앵커에 비해 저항강도의 증가는 미소하였으며 동적하중에 의한 강도는 정적하중에 의한 강도와 거의 같은 값을 보였다.

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

  • Hwang, Jin-Ha;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kang, Thomas H.K.;Pan, Zuanfeng
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.53-63
    • /
    • 2016
  • Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of concrete compressive strength, fiber volume fraction, and prestressing force level. Their localized behavior around the critical shear cracks was measured by a non-contact image-based displacement measurement system, and thus their shear deformation was thoroughly investigated. The tested SFRPSC members showed higher shear strengths as the concrete compressive strength or the level of prestress increased, and their stiffnesses did not change significantly, even after diagonal cracking due to the resistance of steel fibers. As the level of prestress increased, the shear deformation was contributed by the crack opening displacement more than the slip displacement. In addition, the local displacements around the shear crack progressed toward directions that differ from those expected by the principal strain angles that can be typically obtained from the average strains of the concrete element. Thus, this localized deformation characteristics around the shear cracks should be considered when measuring the local deformation of concrete elements near discrete cracks or when calculating the local stresses.

전단벽의 전단성능 예측 모형 (Theoretical Models for Predicting Racking Resistance of Shear Walls)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권4호
    • /
    • pp.96-105
    • /
    • 2002
  • 전단벽은 현대식 경골목조건축에서 바람이나 지진 등에 의한 측방하중에 대한 저항력을 제공하는 가장 중요한 요소 중의 하나이다. 전단벽에서 건물에 전달된 측방하중은 벽의 스터드와 덮개재료 사이의 못접합부를 통하여 덮개재료로 전달되고 덮개재료에 전달된 하중은 판재의 면전단력에 의하여 지지된다. 따라서 실제 전단벽에서 측방하중에 대한 저항력을 결정하는 가장 중요한 요소는 못접합부라고 할 수 있을 것이다. 이 연구에서는 스터드와 판재 사이의 못접합부에 대한 강성 및 강도를 측정하였으며 이 값들은 전단벽의 찌그러짐 저항력을 예측하는 이론모형의 입력자료로 사용되었다. 이론모형의 예측치의 정확성을 검증하기 위하여 판재 한 장으로 구성된 전단벽의 전단시험을 수행하였다. 못접합부의 강성은 스터드 부재의 섬유방향에 의하여 영향을 받았으나 판재의 방향은 거의 영향을 미치지 않는 것으로 나타났다. 전단하중 하에서 못접합부나 전단벽의 거동은 3개의 직선구간으로 나나낼 수 있었으며 이론모형 I보다 이론모형 II의 예측치가 더 정확하였다.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.