• Title/Summary/Keyword: shear property

Search Result 629, Processing Time 0.027 seconds

Seismic Performance Improvement of Liquid Storage Tank using Lead Rubber Bearing (납고무받침을 이용한 액체저장탱크 내진성능향상)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.441-449
    • /
    • 2019
  • Recently, interest in the seismic safety of structures is rising in South Korea due to the occurrences of earthquakes of 5.0 or greater magnitudes such as Gyeongju earthquake (September 2016) and Pohang earthquake (November 2017). In particular, the importance of living facilities that cause human injuries and property losses is more emphasized. Representative living facilities include gas and oil storage facilities and water tanks. In this study, the seismic performance of liquid storage tanks is improved by applying the lead rubber bearing, which is a seismic isolation method. The lead rubber bearing was designed considering the foundation of liquid storage tanks, and the general properties of the lead rubber bearing were verified through compression and shear tests using fabricated specimens. Furthermore, the behaviors of liquid storage tanks according to seismic and non-seismic isolations were analyzed through durability test, shaking table test and finite element analysis using ANSYS.

Viscoelastic Property of the Brain Assessed With Magnetic Resonance Elastography and Its Association With Glymphatic System in Neurologically Normal Individuals

  • Bio Joo;So Yeon Won;Ralph Sinkus;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.564-573
    • /
    • 2023
  • Objective: To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. Materials and Methods: This prospective study included 47 neurologically normal individuals aged 23-74 years (male-to-female ratio, 21:26). The MRE was acquired using a gravitational transducer based on a rotational eccentric mass as the driving system. The magnitude of the complex shear modulus |G*| and the phase angle 𝛗 were measured in the centrum semiovale area. To evaluate glymphatic function, the Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) method was utilized and the ALPS index was calculated. Univariable and multivariable (variables with P < 0.2 from the univariable analysis) linear regression analyses were performed for |G*| and 𝛗 and included sex, age, normalized white matter hyperintensity (WMH) volume, brain parenchymal volume, and ALPS index as covariates. Results: In the univariable analysis for |G*|, age (P = 0.005), brain parenchymal volume (P = 0.152), normalized WMH volume (P = 0.011), and ALPS index (P = 0.005) were identified as candidates with P < 0.2. In the multivariable analysis, only the ALPS index was independently associated with |G*|, showing a positive relationship (β = 0.300, P = 0.029). For 𝛗, normalized WMH volume (P = 0.128) and ALPS index (P = 0.015) were identified as candidates for multivariable analysis, and only the ALPS index was independently associated with 𝛗 (β = 0.057, P = 0.039). Conclusion: Brain MRE using a gravitational transducer is feasible in neurologically normal individuals over a wide age range. The significant correlation between the viscoelastic properties of the brain and glymphatic function suggests that a more organized or preserved microenvironment of the brain parenchyma is associated with a more unimpeded glymphatic fluid flow.

Evaluation of Mechanical Property for Pb-free Solder/Ni Plate Joints with Artificial Aging Time (인공시효시간에 따른 Ni 기판 Pb-free 솔더접합부의 기계적 물성평가)

  • Park, So Young;Yang, Sung Mo;Yu, Hyo Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.467-471
    • /
    • 2015
  • Thus far, solders used in electronics remain lead-based. Pb-free solutions in electronic components and systems are receiving increased attention in the semiconductor and electronics industries. Pb-free materials currently in used are Sn-37Pb, Sn-4Ag and Sn-4Ag-0.5Cu/Ni plate joints. In this study, solder alloys were used at high temperatures for artificial aging processing that was performed at $150^{\circ}C$ for 0hr, 100hr, 200hr, 400hr, 600hr and 1000hr. The SP test was conducted at $30^{\circ}C$ and $50^{\circ}C$. As a result, the maximum shear strength of all the specimens decreased with the increase in artificial aging time and temperature of the SP test. In addition, Pb-free solders showed higher total fracture energy compared with Sn-37Pb at high temperatures. The mechanical properties of Sn-4Ag-0.5Cu solder/Ni plate joints remained in excellent conditions in electronic parking systems at high temperatures.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

Evaluating Shear Wave Velocity of Rock Specimen Through Compressional Wave Velocities Obtained from FFRC and Ultrasonic Velocity Methods (양단자유공진주 및 초음파속도법으로 획득한 압축파 속도를 이용한 암석시편의 전단파 속도 도출)

  • Bang, Eun Seok;Park, Sam Gyu;Kim, Dong Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.250-256
    • /
    • 2013
  • Using shear wave velocity is more reasonable to estimate strength and integrity of rock compared with using compressional wave. It is often ambiguous to pick the dominant frequency caused by torsional wave when evaluating $V_S$ of rock specimen from FFRC method. It is also sometimes ambiguous to pick the first arrival point of S wave compared with P wave in the signals acquired from ultrasonic velocity method. Otherwise, the procedure of evaluating $V_P$ using ultrasonic velocity method and $V_L$ using FFRC method is relatively stable. Through the relationship between elastic modulus, poisson's ratio and $V_S$ can be obtained from $V_P$, $V_L$. Applicability was checked using model specimens having different material property and length and rock specimens sampled in mine area, and usefulness of proposed procedure was verified.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Effect of Carcass Traits, Sarcomere Length and Meat Quality Properties on Beef Longissimus Tenderness at 24 hr Postmortem (한우육의 도체특성, 근절길이 및 품질특성이 연도에 미치는 영향)

  • 문성실;강근호;허선진;정진연;양한술;김진성;주선태;박구부
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • This study was conducted to investigate the effect of sarcomere length, carcass and quality traits on tenderness of Hanwoo beef at 24 hr postmortem. Immediately after slaughter, a total number of 30 carcasses(Hanwoo bull) selected, and sarcomere length was determined during rigor development(1, 3, 6, 12 and 24 hr). Tenderness group of longissimus dorsi muscle classified into tender group($\leq$7.5 kg/$\textrm{cm}^2$, n=9), or tough group($\geq$9.0 kg/$\textrm{cm}^2$, n=9) by shear force value at 24 hr postmortem, and estimated carcass traits, meat color, connective tissue and sensory property at 24 hr postmortem. Results showed that tender group had heavier carcass weight, thicker back fat, higher marbling score, lighter meat color, more white fat color and lower texture score(p<0.05). The change of sarcomere length was linearly decreased(p<0.05) from 3 hr postmortem, and the sarcomere length of tender group was significantly(p<0.05) longer than that of tough group at 3, 6 and 24 hr postmortem. The tender group showed significantly lower(p<0.05) shear force value of intramuscular connective tissue(IMCT), better(p<0.05) tenderness and overall acceptability compared to the tough group. Results indicated that tenderness of beef longissimus dorsi muscle could be improved by thicker back fat, higher marbling score and lower texture score, and predicted by sarcomere length of pre-rigor(3 and 6 hr postmortem). Also, the tenderness of beef longissimus dorsi muscle could be closely related to shear force value of IMCT, compared to total collagen and soluble collagen content in the same age.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Estimation of Soft Ground Piezocone Factors at Gwangyang, Jeonnam (전남 광양지역 연약지반의 피에조콘계수 산정)

  • Oh, Dongchoon;Kim, Kibeom;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Using the results from laboratory soil test, field vane test and piezocone penetration test, the engineering characteristics of the soft ground at east side of Gwangyang Port, which is located at south coast of Jeollanam-do, were investigated and optimal piezocone penetration test depth was derived to calculate piezocone factor. In this paper, the results of 61 laboratory soil tests, 226 times of field vane tests and 26 piezocone penetration tests were used. The result of laboratory soil test suggested that some physical properties such as specific gravity, moisture content, liquid limit and plastic index and others are higher than other south coast regions, meanwhile uniaxial compression strength, undrained shear strength, defined as mechanical property, appeared to be relatively small, distributed widely. According to the plastic chart, the ground was classified as high compressibility clay and low compressibility clay, mostly represent to Type 3 clay by Robertson (1990)'s classification chart. Piezocone factor was calculated by empirical method, based on the undrained shear strength which was obtained by the field vane test. According to the analysis with 3 different depth range, to set the appropriate measured depth range of piezocone penetration for comparation, using average value of the range of 5 times the vane length showed the highest correlation.