• 제목/요약/키워드: shear plate

검색결과 1,762건 처리시간 0.025초

무보강 강판 전단벽의 비선형 해석 (A Nonlinear Analysis of Un-stiffened Steel Shear Wall)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성 (Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios)

  • 신동현
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation

  • Topal, Umut;Nazarimofrad, Ebrahim;Kholerdi, Seyed Ebrahim Sadat
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.369-375
    • /
    • 2018
  • This paper presents the shear buckling analysis of symmetrically laminated cross-ply plates resting on Pasternak foundation under pure in-plane uniform shear load. The classical laminated plate theory is used for the shear buckling analysis of laminated plates. The Rayleigh-Ritz method with novel plate shape functions is proposed to solve the differential equations and a computer programming is developed to obtain the shear buckling loads. Finally, the effects of the plate aspect ratios, boundary conditions, rotational restraint stiffness, translational restraint stiffness, thickness ratios, modulus ratios and foundation parameters on the shear buckling of the laminated plates are investigated.

연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능 (Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate)

  • 조창근;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.653-673
    • /
    • 2019
  • This work investigates a novel quasi-3D hyperbolic shear deformation theory is presented to discuss the buckling of new type of sandwich plates. This theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements through the thickness. The enhancement of this formulation is due to the use of only five unknowns by including undetermined integral terms, contrary to other theories where we find six or more unknowns. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. A new type of FGM sandwich plates, namely, both FGM face sheets and FGM hard core are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Analytical solutions are obtained for a simply supported plate. The accuracy of the present theory is verified by comparing the obtained results with quasi-3D solutions and those predicted by higher-order shear deformation theories. The comparison studies show that the obtained results are not only more accurate than those obtained by higher-order shear deformation theories, but also comparable with those predicted by quasi-3D theories with a greater number of unknowns.

Bending analysis of exponentially varied FG plates using trigonometric shear and normal deformation theory

  • Sunil S. Yadav;Keshav K. Sangle;Mandar U. Kokane;Sandeep S. Pendhari;Yuwaraj M. Ghugal
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.281-302
    • /
    • 2023
  • In this paper, bending analysis of exponentially varying functionally graded (FG) plate is presented using trigonometric shear deformation theory (TSDT) considering both transverse shear and normal deformation effects. The in-plane displacement field consists of sinusoidal functions in thickness direction to include transverse shear strains and transverse displacement include the effect of transverse normal strain using the cosine function in thickness coordinate. The governing equations and boundary conditions of the theory are derived using the virtual work principle. System of governing equations, for simply supported conditions, Navier's solution technique is used to obtain results. Plate material properties vary across thickness direction according to exponential distribution law. In the current theory, transverse shear stresses are distributed accurately through the plate thickness, hence obviates the need for a shear correction factor. TSDT results are compared with those from other theories to ensure the accuracy and effectiveness of the present theory. The current theory is in excellent agreement with the semi-analytical theory.