• Title/Summary/Keyword: shear lag coefficient

Search Result 6, Processing Time 0.018 seconds

Shear Lag Phenomenon of Tube Structure with Core Wall in Relation to Nondimensional Structural Parameters (튜브-전단벽 구조의 무차원 구조변수에 따른 전단지연 현상)

  • 유은정;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.325-332
    • /
    • 2003
  • The tube structures act like cantilevered box beams and effectively resist lateral loads. In result, they are adopted as a high-rise buildings system. However, the shear lag in tube system prevents the idealized tube behavior such as a cantilevered box beam. Therefore, the studies on shear lag phenomena are necessarily requested. The presented papers are almost studied on framed tube structures and tube in tube structures. However, the study on the shear lag in the tube structure with core wall is lack. Thus, in this paper, the shear lag of the structure is studied. The shear lag coefficient is defined to investigate shear lag phenomena. However, existing shear lag coefficients are not adequate for understanding them. Therefore, on this study, new shear lag coefficient is suggested. In addition, the shear lag in the tube structure with core wall is analyzed by changing the five structural parameters of stiffness factor in frame, stiffness factor in wall, stiffness ratio, the number of stories and the number of bays.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory (전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.