• Title/Summary/Keyword: shear friction

Search Result 969, Processing Time 0.022 seconds

Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method (반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.

A Study on the Characteristics of Machining for AC8A-T6 Aluminum Alloy (AC8A-T6 알루미늄 합금재의 절삭가공 특성에 관한 연구)

  • 최현민;김경우;김우순;김용환;김동현;채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.192-197
    • /
    • 2002
  • In this study, examined the cutting characteristics of alumuminum alloy AC8A-T6 that is used to present car piston materials. And in been holding materials machining empirically escape as result that experiment comparison changing the cutting speed and feed on various condition to choose efficient machining condition. The following results can be summarized from this research. 1. As the cutting speed decreased, principal cutting force and thrust cutting force is increased, and reason that cutting force interacts greatly in the low cutting speed is thought by result by BUE's stabilization. 2. The feed speed and cutting speed increase, friction factor is decrescent and the cause appeared the thrust cutting force is fallen than cutting force relatively because chip flow according to increase of the feed rate is constraint. 3. Though specific cutting resistance grows cutting area and the feed rate are few, the cause was expose that shear angle decreases by rake face of tool gets into negative angle remarkably as wear of a cutting tool or defect part of workpiece is cut. 4. Cutting speed do greatly depth of cut is slow, surface roughness examined closely through an experiment that becomes bad, and know that it can get good surface that process cutting speed because do feed rate by 0.1mm/rev low more than 250m/min to get good surface roughness can.

  • PDF

Strength Characteristics and their Behaviours of Marine Silty Sands (실트질 해사의 역학적 특성 및 거동에 관한 연구)

  • 장병욱;송창섭;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.74-83
    • /
    • 1994
  • A series of isotropic consolidation tests, undrained and drained triaxial compression tests was carried out to investigate the physical characteristics and behaviours of marine silty sands collected from the western coast of Korea. This study also included a theoretical development of the constitutive equation to evaluate stress-strain relationship and volume change of silty sands. The results and main conclusions of the study are summarized as follows; 1. Isotropic compression and swelling index are linearly decreased with an increase in relative density. 2. Both undrained shear strengh and elastic modulus are increased with an increase in relative density and confining pressure. 3. Internal friction angles obtained from drained and undrained compression tests of the soils are proportional to relative density. 4. The phenomenon of dilatancy of each sample is less profound when confining stress is increased but more profound when relative density is increased. 5. The slope of critical state lines is 1.78 for Saemangum, 1.70 for Siewha and 1.26 for Sukmoon sands. 6. In this study, Drucker-Praper type criterion is used and hardening function of Cap model is modified by hyperbolic fuction. This will improve a lack of physical meaning of hardening parameters in conventional Cap model. 7. A newly developed constitutive equation to the forementioned silty sands and checked its applicability. This is in good agreement with the measured data.

  • PDF

potential of Noncircular Fiber as Reinforcing Material l. C-type carbon fiber

  • Boh, Shim-Hwan;Rhee Bo sung
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.817-822
    • /
    • 1994
  • The reinforcing effect of C-shape carbon fiber was investigated as comparing to typical round-shape fiber with similar properties. The results show that C-shape fiber reinforced materials have better in almost all aspects of mechanical properties, or 218% in flexural strength, 223% flexural modulus, 157% interlamina shear strength, 227% impact strength, 184% transverse flexural strength and so on. Also in damping characteristics considerably concerned with fatigue life, friction/wear coefficient of a material, C-CF/EP had about 185% greater. In this research, we present the potential of non-circular fiber reinforcing materials by C-shape carbon fiber.

  • PDF

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

A non-dimensional theoretical approach to model high-velocity impact on thick woven plates

  • Alonso, L.;Garcia-Gonzalez, D.;Navarro, C.;Garcia-Castillo, S.K.
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.717-737
    • /
    • 2021
  • A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

Reinforcement effect of surface stabilizer using surface curtain walls on aging reservoirs

  • Song, Sang-Huwon;Cho, Dae-Sung;Seo, Se-Gwan
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In Korea, accidents related to the collapse of deteriorated aging reservoirs occur every year. The grouting method is generally applied to reinforce an aging reservoir. However, when using this method, different reinforcing effects appear depending on the ground conditions. Thus, new construction methods and materials capable of providing consistent reinforcing effects are required. In this study, the direct shear test (DST), model test, and simulation analysis were performed to evaluate the impact of surface stabilizers, generally used to reinforce roads, rivers, and slopes of roads, applied using surface curtain walls on aging reservoirs. The DST results indicate that when the surface stabilizer was mixed with in-situ soil, the increase in cohesion was the highest at a mixing ratio of 9%. No changes in the friction angle were evident; therefore, 9% was determined to be the optimal mixing ratio. In addition, the model test and simulation analysis showed that when 9% of the surface stabilizer was mixed and applied to the aging reservoir, the seepage quantity of water and the saturated area were reduced by approximately 42% and 73%, respectively. Moreover, the comprehensive analysis of results showed that the grouting method could be completely replaced by surface stabilizers applied through surface curtain walls because the technique could secure stability by decreasing the seepage in the aging reservoir.

Gaussian process regression model to predict factor of safety of slope stability

  • Arsalan, Mahmoodzadeh;Hamid Reza, Nejati;Nafiseh, Rezaie;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.453-460
    • /
    • 2022
  • It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.

Modeling Parameters for Column-Tree Type Steel Beam-Column Connections (컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안)

  • An, Heetae;Kim, Taewan;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.