Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.6.717

A non-dimensional theoretical approach to model high-velocity impact on thick woven plates  

Alonso, L. (Department of Chemical Technology, Energy and Mechanics, Rey Juan Carlos University)
Garcia-Gonzalez, D. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid)
Navarro, C. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid)
Garcia-Castillo, S.K. (Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid)
Publication Information
Steel and Composite Structures / v.38, no.6, 2021 , pp. 717-737 More about this Journal
Abstract
A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.
Keywords
energy-absorption; impact behavior; analytical modelling; numerical modelling; FRP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hongyong, J., Yiru, R., Binhua, G., Jinwu, X. and Fu-Gwo, Y., (2017), "Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms", Int. J. Mach. Sci., 113-136, 636-651. https://doi.org/10.1016/j.ijmecsci.2017.06.050.   DOI
2 Hufenbach, W., Gude, M., Bohm, R.and Zscheyge, M. (2011), "The effect of temperature on mechanical properties and failure behaviour of hybrid yarn textile-reinforced thermoplastics". Mater. Design, 32, 4278-4288. https://doi.org/10.1016/j.matdes.2011.04.017.   DOI
3 Kharazan, M., Sadr, M. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.   DOI
4 Li, X., Nia, A., Ma, X., Yahya, M. and Wang, Z. (2017), "Dynamic response of kevlar 29/epoxy laminates under projectile impact-experimental investigation", Mech. Adv. Mater. Struct., 24, 114-121. https://doi.org/10.1080/15376494.2015.1107670.   DOI
5 Liu, P., Zhu, D., Wang, J. and Bui, T. (2017), "Structure, mechanical behavior and puncture resistance of grass carp scales". J. Bionic Eng., 14, 356-368. https://doi.org/10.1016/S1672-6529(16)60404-3.   DOI
6 Lopes, C., Camanho, P., Gurdal, Z., Miami, P. and Gonzalez, E. (2009), "Low-velocity impact damage on dispersed stacking sequence laminates. part ii: Numerical simulations", Compos. Sci. Technol., 69, 937-947. https://doi.org/10.1016/j.compscitech.2009.02.015.   DOI
7 Moyre, S., Hine, P., Duckett, R., Carr, D. and Ward, I. (2000), "Modelling of the energy absorption by polymer composites upon ballistic impact", Compos. Sci. Technol., 60, 2631-2642. https://doi.org/10.1016/S0266-3538(00)00139-1.   DOI
8 Mamivand, M. and Liaghat, G. (2010), "A model for ballistic impact on multi-layer fabric targets", Int. J. Impact Eng., 37, 806-812. https://doi.org/10.1016/j.ijimpeng.2010.01.003.   DOI
9 Martinez-Hergueta, F., Ridruejo, A., Gonzalez, C. and Llorca, J. (2015), "Deformation and energy dissipation mechanisms of needle-punched nonwoven fabrics: a multiscale experimental analysis", Int. J. Solid. Struct., 64-65, 120-131. https://doi.org/10.1016/j.ijsolstr.2015.03.018.   DOI
10 Miami, P., Camanho, P., Mayugo, J. and Davila, C. (2007), "A continuum damage model for composite laminates: Part i-constitutive model", Mech. Mater., 39, 897-908. https://doi.org/10.1016/j.mechmat.2007.03.005.   DOI
11 Navarro, C. (1998), "Simplified modelling of the ballistic behaviour of fabric and fibre-reinforced polymer matrix composites", Key Eng. Mater., 141-143, 383-400.   DOI
12 Naik, N. and Doshi, A. (2005), "Ballistic impact behaviour of thick composites: analytical formulation", AIAA J., 43, 1525-1536. https://doi.org/10.2514/1.11993.   DOI
13 Naik, N. and Shrirao, P. (2004), "Composite structures under ballistic impact", Compos. Struct., 66, 579-590. https://doi.org/10.1016/j.compstruct.2004.05.006.   DOI
14 Naik, N., Shrirao, P. and Reddy, C. (2006), "Ballistic impact behaviour of woven fabric composites: formulation", Int. J. Impact Eng., 32, 1521-1552. https://doi.org/10.1016/j.ijimpeng.2005.01.004.   DOI
15 Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of kevlar composites with filled epoxy matrix", Steel Compos. Struct., 24, 191-200. https://doi.org/10.12989/scs.2017.24.2.191.   DOI
16 Nguyen, T., Waldmann, D. and Bui, T. (2019), "role of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures", J. Comput. Phys., 386, 585-610. https://doi.org/10.1016/j.jcp.2019.02.022.   DOI
17 Ou, Y., Zhu, D., Zhang, H., Huang, L., Yao, Y., Li, G. and Mobasher, B. (2016), "Mechanical characterization of the tensile properties of glass fiber and its reinforced polymer (gfrp) composite under varying strain rates and temperatures", Polymers 8, https://doi.org/10.3390/polym8050196.   DOI
18 Pandya, K., Shaktivesh, H., Dowtham, H., Inani, A. and Naik, N. (2015), "Shear plugging and frictional behaviour of composites and fabrics under quasi-static loading", Strain 51, 419-426. https://doi.org/10.1111/str.12153.   DOI
19 Potti, S. and Sun, C. (1997), "Prediction of impact induce penetration and delamination in thick composite laminates", Int. J. Impact Eng., 19, 31-48. https://doi.org/10.1016/S0734-743X(96)00005-X.   DOI
20 Turon, A., D'avila, C., Camaho, P. and Coste, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fract. Mech., 74, 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025.   DOI
21 Wen, H. (2000), "Predicting the penetration and perforation of frp laminates struck normally by projectiles with different nose shapes", Compos. Struct., 49, 321-329. https://doi.org/10.1016/S0263-8223(00)00064-7.   DOI
22 Wen, H. (2001), "Penetration and perforation of thick frp laminates", Compos. Sci. Technol., 51, 1163-1172. https://doi.org/10.1016/S0266-3538(01)00020-3.   DOI
23 Xiao, J., Gama, B. and Gillespie Jr, J. (2007), "Progressive damage and delamination in plain weave s-2 glass/sc-15 composites under quasi-static punch-shear loading", Compos. Struct., 78, 182-196. https://doi.org/10.1016/j.compstruct.2005.09.001.   DOI
24 Smith, J., F.L., M. and Schiefer, H. (1958), "Stress-strain relationships in yarns subjected to rapid impact loading:5. wave propagation in long textile yarns impacted transversally", J. Res. National Bureau of Standars, 60, 517-534.   DOI
25 Rodriguez-Millan, M., Garcia-Gonzalez, D., Rusinek, A., Abed, F. and Arias, A. (2018), "Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles", Thin-Wall. Struct., 123, 1-10. https://doi.org/10.1016/j.tws.2017.11.004.   DOI
26 Saberi, H., Bui, T., Furukawa, A., Rahai, A. and Hirose, S. (2020), "frp-confined concrete model based on damage-plasticity and phase-field approaches", Compos. Struct., 240, https://doi.org/10.1016/j.compstruct.2020.112263.   DOI
27 Scazzosi, R., Manes, A. and Giglio, M. (2019), "Analytical model of high-velocity impact of a deformable projectile against textilebased composites", J. Mater. Eng. Perform., 28. https://doi.org/10.1007/s11665-019-04026-x.   DOI
28 Shaoquan, W., Shangli, D., Yu, G. and Yungang, S. (2017), "Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite", Mater. Design, 115, 213-223. https://doi.org/10.1016/j.matdes.2016.11.062.   DOI
29 Sikarwar, R. and Velmurugan, R. (2019), "Impact damage assessment of carbon fiber reinforced composite with different stacking sequence", J. Compos. Mater., https://doi.org/10.1177/0021998319859934.   DOI
30 Tarfaoui, M., Choukri, S. and Neme, A. (2008), "Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings", Compos. Sci. Technol., 68, 477-485. https://doi.org/10.1016/j.compscitech.2007.06.014.   DOI
31 ASTM-Standard-D695-96 (1995), Standard test method for compressive properties of rigid plastics.
32 Yiru Ren, H., Zhang, S., Liu, Z. and Nie, L. (2018), "Multiscale finite element analysis for tension and ballistic penetration damage characterizations of 2d triaxially braided composite", J. Mater. Sci., 53, 10071-10094. https://doi.org/10.1007/s10853-018-2248-x.   DOI
33 Zhang, X., Liu, T., He, N. and Jia, G. (2016), "Investigation of two finite element modelling approaches for ballistic impact response of composite laminates", Int. J. Crashrothiness, 22, 377-393. https://doi.org/10.1080/13588265.2016.1270495.   DOI
34 Zhu, G., Goldsmith, W. and Dharan, C. (1992), "Penetration of laminated kevlar by projectiles ii. analytical model", Int. J. Solid. Struct., 29, 421-436. https://doi.org/10.1016/0020-7683(92)90208-B.   DOI
35 Zhu, G., Sun, G., Yu, H., Li, S. and Li, Q. (2018), "Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading", Int. J. Mech. Sci., 135, 458-483. https://doi.org/10.1016/j.ijmecsci.2017.11.017.   DOI
36 Alonso, L., Navarro, C. and Garcia-Castillo, S. (2018b), "Experimental study of woven-laminates structures subjected to high-velocity impact". Mech. Adv. Mater. Struct., doi:10.1080/15376494.2018.1526354.   DOI
37 ASTM-Standard-D732-02 (2002), Standard test method for shear strenght of plastics by punch tool.
38 Bai, Y., Post, N., Lesko, J. and Keller, T. (2008), "Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded gfrp composites", Thermochimica Apta, 469, 28-35. https://doi.org/10.1016/j.tca.2008.01.002.   DOI
39 Braun, O. and Naumovets, A. (2005), "Nanotribology: microscopic mechanisms of friction", Surface science reports 60, 79-158. https://doi.org/10.1016/j.surfrep.2005.10.004.   DOI
40 Briescani, L., Manes, A. and Giglio, M. (2015), "An analytical model for ballistic impacts against plain-woven fabrics with a polymeric matrix", Int. J. Impact Eng., 78, 138-149. doi:10.1016/j.ijimpeng.2015.01.001.   DOI
41 Buitrago, B., Garcia-Castillo, S. and Barbero, E. (2010), "Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact". Mater. Lett., 64, 1052-1054. https://doi.org/10.1016/j.matlet.2010.02.007.   DOI
42 Alonso, L., Martinez-Hergueta, F., Garcia-Gonzalez, D., Navarro, C., Garcia-Castillo, S. and Teixeira-Dias, F. (2020), "A finite element approach to model high-velocity impact on thin woven gfrp plates", Int. J. Impact Eng., 142. https://doi.org/10.1016/j.ijimpeng.2020.103593.   DOI
43 Alonso, L., Navarro, C. and Garcia-Castillo, S. (2018a), "Analytical models for the perforation of thick and thin thicknesses woven-laminates subjected to high-velocity impact", Compos. Part B 143, 292-300. https://doi.org/10.1016/j.compositesb.2018.01.030.   DOI
44 Chang, F. and Chang, K. (1987), "A progressive damage model for laminated composites containing stress concentrations", J. Compos. Mater., 21, 834-855. https://doi.org/10./1177/002199838702100904.   DOI
45 Chao Zhang, J., Sosa, C. And Bui, T. (2018), ≪meso-scale progressive damage modeling and life prediction of 3d braided composites under fatigue tension loading". Compos. Struct., 201, 62-71. https://doi.org/10.1016/j.compstruct.2018.06.021.   DOI
46 Ehsani, A. and Rezaeepazhand, J. (2016), "Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm", Int. J. Mech.Sci., 119, 97-106. https://doi.org/101016/j.ijmecsci.2016.09.028.   DOI
47 Costas, M., Morin, D., Langseth, M., Diaz, J. and Romera, L. (2017), "Static crushing of aluminium tubes filled with pet foam and a gfrp skeleton. numerical modelling and multiobjective optimization", Int. J. Mech. Sci., 131-132, 205-217. https://doi.org/10.1016/j.ijmecsci.2017.07.004.   DOI
48 Davila, C., Camacho, P. and Rose, C. (2005), "Failure criteria for frp laminates", J. Compos. Mater., 39, 323-345. https://doi.org/10.1080/15376494.2019.1655688.   DOI
49 Dhari, R., Patel, N., Wang, H. and Hazell, P. (2019), "Progressive damage modeling and optimization of fibrous composites under ballistic impact loading", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2019.1655688.   DOI
50 Ding, G., Sun, L., Wan, Z., Li, J., Pei, X. and Tang, Y., 2018. "Recognition of damage modes and hilbert-huang transform analyses of 3d braided composites", J. Compos. Sci., 2, https://doi.org/10.3390/jcs2040065.   DOI
51 Ferguson, R., Hinton, M. and Hiley, M. (1998), "Determining the through-thickness properties of frp materials", Compos. Sci. Technol., 58, 1411-1420. https://doi.org/10.1016/S0266-3538(98)00026-8.   DOI
52 Garcia-Castillo, S., Lopez-Puente, J., Sanchez Saez, S., Barbero, E. and Navarro, C. (2006), "Analytical model for energy absorption capabilities of glass/polyester panels subjected to ballistic impact", Conference in Developments in Theoretical and Applied Mechanics.
53 Garcia-Castillo, S., Sanchez-Saez, S. and Barbero, E. (2012), "Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts", J. Strain Anal. Eng. Des., 47, 444-452. https://doi.org/10.1177/0309324712454996.   DOI
54 Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47, 329-334. https://doi.org/10.1115/1.3153664.   DOI
55 Garcia-Gonzalez, D., Rusinek, A., Jankowiak, T. and Arias, A. (2015), "Mechanical impact behaviour of polyetherether-ketone (peek)", Compos. Struct., 124, 88-99. https://doi.org/10.1016/j.compstruct.2014.12.061.   DOI
56 Garcia-Gonzalez, D., Zaera, R. and Arias, A. (2017), "A hyperelasticthermoviscoplastic constitutive model for semi-crystalline polymers: Application to peek under dynamic loading conditions", Int. J. Plasticity, 88, 27-52. https://doi.org/10.1016/j.ijplas.2016.09.011.   DOI
57 Gil-Alba, R., Alonso, L., Navarro, C. and Garcia-Castillo, S. (2019), "Morphological study of damage evolution in woven-laminates subjected to high-velocity impact", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2019.1692264.   DOI
58 Guangyong, S., Tong, S., Chen, D., Gong, Z. and Li, Q. (2018), "Mechanical properties of hybrid composites reinforced by carbon and basalt fibers", Int. J. Mech. Sci., 148, 636-651. https://doi.org/10.1016/j.ijmecsci.2018.08.007.   DOI
59 Haro, E., Odeshi, A. and Szpunar, J. (2016), "The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact", Int. J. Impact Eng., 96, 11-22. https://doi.org/10.1016/j.ijimpeng.2016.05.012.   DOI
60 Hazzard, M., Trask, R., Heisserer, U., Van Der Kamp, M. and Hallett, S. (2018), "Finite element modelling of dyneema® composites: from quasi-static rates to ballistic impact". Compos. Part A: Appl. Sci. Manufact., 115, 31-45. https://doi.org/10.1016/j.compositesa.2018.09.005.   DOI