• 제목/요약/키워드: shear friction

검색결과 964건 처리시간 0.027초

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

토목섬유 접촉면의 역학적 특성에 관한 연구 (A study on the mechanical properties of geosynthetic interface)

  • 남용;김광호;임종철;주인곤;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1540-1549
    • /
    • 2009
  • Shear properties of geosynthetic/geosynthetic and geosynthetic/soil were evaluated from direct shear tests. The type of geosynthetic is Velcro which is effective for geosynthetic interface and make up for the weakness of sandbag. In this study, the cohesion and the angle of internal friction of each interface was estimated. The test results showed that the cohesion and the angle of internal friction of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and combinations of the geosynthetics and soils. Finally, by comparing the apparent cohesion and the friction angle of the geosynthetics, the applicability to design was identified.

  • PDF

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

Shear Process and Frictional Characteristics in Down-end Milling

  • Lee, Young-Moon;Jang, Seung-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.19-24
    • /
    • 2003
  • In end milling process, which is characterized by the use of a rotating tool, the undeformed chip thickness varies periodically with phase change of the tool. Although many efforts have concentrated on the study of end milling process, the analysis of shear and chip-tool friction behaviors has not been reported. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process are replaced with the equivalent ones of oblique cutting. Then it is possible to simulate the shear and the chip-tool friction characteristics of a down-end milling process. The proposed model has been verified through two sets of cutting tests i.e., down-end milling and the equivalent oblique cutting tests. The experimental results show that the proposed model is suitable to analyze the shear and chip-tool frictional characteristics of down-end milling process. The specific cutting energy decreases with increase in equivalent undeformed chip thickness in a down-end milling process.

Development and Structural Assessment of Joints of Permanent Uni-Wall System and Floor Systems in Substructure

  • Chun, Sung-Chul;Kim, Seung-Hun;Noh, Sam-Young;Kim, Kap-Soo;Han, Byum-Seok
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.230-242
    • /
    • 2012
  • Recently the Permanent Uni-wall System (PUS) has been developed which improved the disadvantage of the Cast-In-Place Concrete Pile (CIP) and could be used as permanent retaining wall. In this study, joints between PUS and floor systems were developed. From analyses of the characteristics of design and construction of PUS, shear friction reinforcements with couplers were adopted for shear design of the joints. Twelve types of joints were developed which were classified according to the types of floor structures, wale, and piles of PUS. Two typical joints were tested and the joints showed satisfactory behaviors on the points of shear strength, stiffness, and serviceability. Especially the shear strengths were much higher than the design strengths due to the shear keys which were by-products in splicing shear reinforcements. However, the shear strength of the joint is recommended to be designed by only shear friction reinforcement because shear key is not reliable and too brittle.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구 (An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint)

  • 이경진;황경민;김우범
    • 한국강구조학회 논문집
    • /
    • 제25권6호
    • /
    • pp.623-634
    • /
    • 2013
  • 본 연구에서는 RC 구조 슬래브와 SC 구조 전단벽이 만나는 접합부의 거동특성을 파악하고 RC구조 슬래브-SC구조 전단벽 이질접합부의 전단마찰내력을 평가하고 KEPIC SNG의 접합면 소요전단강도 기준의 안전율을 평가하기 위해 실험연구를 수행하였다. 연구결과, 접합면의 전단마찰내력은 약 300kN으로 나타났고, 변위가 증가할수록 철근의 내력분담이 증가하게 되며, 상부철근보다는 하부철근의 전단내력 분담율이 높은 것으로 나타났다. 하부철근을 구성한 경우에는 하부철근이 없는 실험체에 비해 40% 이상 전단내력이 증가하는 것으로 나타났다.

편평한 암석절리면의 속도 의존적 전단거동 특성 (Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities)

  • 박병기;이창수;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제9권2호
    • /
    • pp.121-131
    • /
    • 2007
  • 최근 암반구조물의 규모가 점차 대형.대단면화됨에 따라 암반 절리면이 자유면에 노출되는 경우가 빈번하게 발생할 수 있으며 지진, 발파와 같은 외부 동적 하중의 영향을 받을 가능성이 커지고 있으므로 다양한 동적 하중조건 하에서 암반 불연속면의 거동 특성 파악을 위한 연구의 필요성이 증대되고 있다. 본 연구에서는 전단속도의 변화에 따른 편평한 화강암 전단면의 마찰특성 변화를 알아보고자 다양한 조건하에서 직접전단시험을 수행하였다. 수행한 직접전단시험은 크게 두 가지로 나눌 수 있는데 첫 번째 시험에서는 시험이 수행되는 동안 각각 7가지의 일정한 전단속도로 전단변위가 발생되도록 하여 전단속도에 따른 마찰계수의 변화를 살펴보았으며, 두 번째 시험에서는 전단변위가 발생되는 중간에3가지 형태의 순간적인 전단속도 변화가 마찰특성에 미치는 영향을 살펴보았다. 수직응력과 전단속도의 변화에 따른 편평한 화강암의 마찰계수 변화는 가해진 수직응력 수준에 영향을 받는 것으로 나타났으며, 전단속도의 변화가 마찰거동에 영향을 미치기 시작하는 전이속도는 수직응력이 증가함에 따라 낮아지는 것으로 나타났다. 또한 전단속도가 느릴수록 stick-slip 거동에서의 응력 저하 폭이 커지는 경향을 보였다. 순간적인 전단속도 변화에 따른 정상 상태에서의 마찰계수 변화를 살펴본 결과 순간적인 속도의 증가에 따라 마찰계수가 감소하는 속도 연화 현상이 나타났으며, 느린 전단속도에서 전단속도의 변화에 따른 마찰계수의 감소폭이 빠른 전단속도에서의 변화에 따른 감소폭보다 더 큰 경향을 보였다.

  • PDF

二次元 切削時 칩-工具 마찰상태에 따른 剪斷角 변화 (Shear Angle Variation Depending on Chip-Tool Friction in Orthogonal Cutting)

  • 이영문;송지복
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.252-261
    • /
    • 1988
  • 본 연구에서는 강의 2차원 적삭실험을 행하고 칩의 두께측정으로부터 구한 전단각 해에 의한 전단각 값의 비교를 통하여 이들 전단각 해의 한계성을 고찰하였으며,Zorev에 의한 제한된 전단과정과 마찰과정의 상호 의존성에 입각한 정역학적인 평형조건 과 공구경사면에 작용하는 응력분포의 가정하에서 전단각.PHI.의 새로운 해를 유도하고 이의 실현성을 검토하였다.

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.