• 제목/요약/키워드: shear flow

검색결과 1,884건 처리시간 0.026초

고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석 (Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

용융 폴리우레탄의 비 뉴톤 유동 메카니즘과 유변학적인 성질 (The Non Newtonian Flow Mechanism and Rheological Properties of Polyurethane Melts)

  • 김남정
    • Elastomers and Composites
    • /
    • 제44권4호
    • /
    • pp.423-428
    • /
    • 2009
  • 용융 폴리우레탄의 비 뉴톤 유동곡선을 Physica cone-plate 레오메타를 사용하여 여러 온도에서 구하였다. 이러한 유동 곡선을 이론적인 비 뉴톤 유동식에 적용하여 유동파라메타를 얻었다. 유동곡선에서 전단 속도를 증가시켰다가 감소시킬 때 hysteresis loop가 나타나며, 틱소트로피 유동 현상을 보인다. 용융 폴리우레탄은 전단 흐름에서는 강한 젤 현상을 보이나, 항복응력 이상에서는 비선형 점탄성 성질을 나타낸다. 전단속도를 감소시킬 때 구조변형이 일어나서 전단응력이 전단 속도 증가시보다 작은 값을 보이게 된다.

미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구 (In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube)

  • 강명진;지호성
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.

동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates)

  • 박영호
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

THEORETICAL STUDY OF MOTION OF SMALL SPHERICAL AIR BUBBLES IN A UNIFORM SHEAR FLOW OF WATER

  • MEHDI, SYED MURTUZA;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.126-134
    • /
    • 2015
  • A simple Couette flow velocity profile with an appropriate correlation for the free terminal rise velocity of a single bubble in a quiescent liquid can produce reliable results for the trajectories of small spherical air bubbles in a low-viscosity liquid (water) provided the liquid remains under uniform shear flow. Comparison of the model adopted in this paper with published results has been accomplished. Based on this study it has also been found that the lift coefficient in water is higher than its typical value in a high-viscosity liquid and therefore a modified correlation for the lift coefficient in a uniform shear flow of water within the regime of the $E\ddot{o}tv\ddot{o}s$ number $0.305{\leq}Eo{\leq}1.22$ is also presented.

초음속 유동장에 놓인 공동 유동에 대한 연구 (The Study on Cavity Flow in Supersonic flow field)

  • 권기범;윤용현;홍승규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.139-143
    • /
    • 2003
  • In this study the numerical analyses on cavity flow in supersonic flow field are conducted. According to the length-to-depth ratio of cavity, the shear layer is changed, consequently influencing on vortex structure inside the cavity. Especially in case the fluid flow outside cavity impinges inside the cavity, the oscillation of the cavity flow is identified. Another result is that though the cavity flow shows the unsteadiness, characteristics of cavity flow can be represented by pressure coefficients converged.

  • PDF

균일 전단류내에 있는 원봉주위의 국소 대류 물질 전달에 관한 실험적 연구 (Experimental Study on Local Convective Mass Transfer From a Circular Cylinder in Uniform Shear Flow)

  • 류명석;성형진;정명균
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.789-798
    • /
    • 1989
  • 본 연구에서는 평균속도구배를 용이하게 변화시킬 수 있는 전단유동 발생기를 제작하였다. 최고속도구배는 38se $c^{-1}$까지 얻을 수 있으며 최대중심선 속도는 15m/sec까지이다. 10개의 채널(두께 2mm인 알루미늄판)로 유동단면을 등분하 였으며, 각 채널의 내부저항조절 방법으로 마름모형태의 막대인 knob을 설치하였다.

풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석 (Computational Flow Analysis on Improvement Effect of Wind Shear by a Structure Installed Upstream of a Wind Turbine)

  • 김현구;우상우;장문석;신형기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2008
  • This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

  • PDF

PET직물의 Tank/Liquor-flow 감량에 의한 역학적 특성변화 -굽힘.전단특성- (The Change of Mechanical Properties of Alkali Hydrolyzed PET Fabric with Tank/Liquor-flow Machine - Bending and Shear Properties -)

  • 서말용;한선주;김삼수;허만우;박기수;장두상
    • 한국염색가공학회지
    • /
    • 제10권4호
    • /
    • pp.37-44
    • /
    • 1998
  • The purpose of this study was to elucidate the effect of weight loss of polyethylene terephthalate(PET) fabrics on the mechanical properties such as bending and shear. In order to compare the effect of treatment machine on the mechanical properies of treated PET fabrics, PET fabrics were hydrolyzed with NaOH aqueous solution using Tank machine and Liquor flow machine, respectively. The results were as follows : 1. The bending rigidity and shear stiffness of hydrolyzed PET fabric decreased markedly up to about 10% weight loss regardless of treatment machines. At the above 10% weight loss, the variation of these properties is nearly unchanged. In addition, the bending hysteresis and shear hysteresis also showed similar trend. 2. Weft density change of PET fabrics treated with Liquor flow machine decreased by 1pick/inch. It is assumed that this is attributed to the tension during the treatment of Liquor flow machine. On the other hand, the weft density change of PET fabrics treated with Tank machine is scarcely influeneced by the weight loss. While warp density of PET fabrics treated with Liquor flow machine had no change with weight loss, warp density of PET fabrics treated with Tank machine decreased by 6pick/inch due to the tension. 3. The bending rigidity and shear stiffness of PET fabrics hydrolyzed with liquor flow machine slightly higher than with Tank m/c at the above 10% weight loss. It is assumed that this is caused by the increasement of the crossing pressure of warp and weft yarn and contact points of filaments in the yarns. Also, the bending and shear hysteresis of PET fabrics treated with Tank machine were higher than that of liquor flow machine.

  • PDF

마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구 (Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique)

  • 여창섭;지호성;이상준
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.