• 제목/요약/키워드: shear displacement/stress

검색결과 441건 처리시간 0.025초

링 전단시험기를 이용한 연암의 절리에 대한 잔류강도 특성에 관한 연구 (A Study on Residual Stress Characteristics for Joint of Soft Rock in Ring Shear Tests)

  • 권준욱;김선명;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.281-288
    • /
    • 2000
  • In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.

  • PDF

링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구 (A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests)

  • 권준욱;김선명;윤지선
    • 한국지반공학회논문집
    • /
    • 제16권6호
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발 (Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock)

  • 김대영;천병식;서영호;이영남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Y방향을 따라 물성치구배를 갖는 직교이방성 함수구배 재료에서 전파하는 모드 III 균열의 응력장과 변위장 (Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Functionally Gradient Materials with Property Gradation Along Y Direction)

  • 이광호
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2006
  • Stress and displacement fields of a Mode III crack propagating along the normal to gradient in an orthotropic functionally gradient materials (OFGM), which has (1) an exponential variation of shear modulus and density, and (2) linear variation of shear modulus with a constant density, are derived. The equations of motion in OFGM are developed and solution to the displacement and stress fields for a propagating crack at constant speed though an asymptotic analysis. The first three terms in expansion of stress and displacement are derived to explicitly bring out the influence of nonhomogeneity. When the FGM constant ${\zeta}$ is zero or $r{\rightarrow}0$, the fields for OFGM are almost same as the those for homogeneous orthotropic material. Using the stress components, the effects of nonhomogeneity on stress components are discussed.

  • PDF

Stress Simulation on Suspended Porcelain Insulators with Cement Displacement

  • Han S. W.;Cho H. G.;Park G. H.;Lee D. I.;Choi I. H;Kim T. Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.19-24
    • /
    • 2003
  • The experimental and simulation study of insulator failure by cement growth on suspended insulators (16,500kgf) for transmission line was discussed. To get more practical and analytic calculation results, the advanced program was used. This analysis tool was possible to calculate stress behaviors with mechanical loading when cement displacement happened. From simulation results, the. cement displacement changed with linear according to temperature. The shear stress was about $7 kgf/mm^2$ at $0.07\%$ displacement provided from $200^{\circ}C$, then it could be seen that the cement would be fractured even if $0.07\%$ displacement acted, because the cement had about $7-9 kgf/mm^2$ flexure strength. The curve patterns of shear stress with the increase of mechanical loading were changed at $0.02\%$ as a turning point, when the cement displacement was over $0.02\%$ the shear stresses decreased reversely with the increase of mechanical loading. From analysis on porcelain body it was known that there were enough margin to protect the fracture of porcelain body before the cement

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선 (On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates)

  • 김준식;한 장우;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.249-257
    • /
    • 2011
  • 본 논문에서는 고전적 고차전단변형이론(HSDT)을 이용한 복합재료 적층평판의 응력해석 개선기법을 소개한다. 횡방향 응력들에 대해서만 변분을 취하는 혼합변분이론(Mixed variational theorem)을 통하여 횡방향 전단 변형에너지를 개선하였다. 가정된 횡방향 전단응력은 면내 변위가 5차 다항식을 갖는 고차 지그재그 이론으로부터 구하였으며, 변위들은 고전적 고차전단변형이론의 변위장을 사용하였다. 이 과정을 통하여 얻어진 변형 에너지를 본 논문에서는 EHSDTM라고 명명하였으며, 이 이론을 통해 복합재 적층평판의 변위와 응력을 계산함에 있어서 HSDT와 비슷한 수준의 계산적 효율을 가지면서, 동시에 최소자승오차법에 따른 후처리 과정을 적용함으로써 변위와 응력의 두께방향 분포를 정확하게 예측할 수 있도록 개선하였다. 계산된 결과는 고전적 HSDT, 3차원 탄성해 등의 여러 결과들과 비교하여 검증하였다.

프레스톤 튜브를 이용한 벽면전단응력 측정에 관한 실험적 연구 (Measurement of Wall Shear Stress Using Preston Tubes)

  • 강신형;윤민수;전우평
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1873-1880
    • /
    • 1994
  • Fully developed turbulent flow in a circular pipe and laminar boundary layer on a flat plate were measured to develop a measuring technique of the wall sheat stress using Preston tubes. New empirical formulas to extimate displacement factor of Preston tube obtained through the present study. The displacement factor for turbulent flow was considerably different from that for the laminar flow. Measured wall shear stress was not pretty dependent on the displacement factor for Preston tubes in the inertia sublayer of turbulent boundary layer, however was considerably affected in the laminar boundary layer. Measuring error of skin friction using the CPM technique was 3% for turbulent and 5% for thin laminar boundary layers.

복합하중을 받는 샌드위치 시편의 응력분포에 미치는 시편 형상의 영향 (Effects of Specimen Geometry on Stress Distribution in Sandwich Specimen Under Combined Loads)

  • 박수경;홍성태
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1587-1592
    • /
    • 2010
  • 복합하중 하에서의 샌드위치 시편내의 응력분포에 시편의 형상과 하중조건이 미치는 영향을 수치해석을 통하여 고찰하였다. 상용 유한요소해석 프로그램인 NASTRAN 을 사용하여 세 종류의 형상계수를 가지는 시편들에 대하여 평면변형률, 2 차원 해석을 수행하였으며, 각각의 시편에 대하여 각각 다른 복합변위각을 가지는 네 종류의 복합변위를 적용하였다. 수치해석의 결과는 복합변위각이, 즉 전단변위의 수직변위에 대한 상대적인 크기가, 응력 불균일분포영역의 크기에 미치는 영향이 전단응력과 폰 미세스(von Mises)응력의 경우에만 나타나고 수직응력의 경우에는 나타나지 않음을 보여준다. 또한 복합변위각이 증가함에 따라 전단응력의 불균일분포영역의 크기는 감소함에 비해서 폰 미세스 응력의 불균일분포영역의 크기는 증가한다. 추가로, 형상계수가 증가함에 따라, 즉, 시편의 길이의 높이에 대한 상대적 크기가 커질수록, 복합변위 하에서의 응력 불균일분포영역의 크기는 현격하게 감소한다.