• Title/Summary/Keyword: shear cracks

Search Result 417, Processing Time 0.028 seconds

Shielding Effects of Bimaterial Interfaces by Crack Surface Asperities (균열 표면거칠기에 의한 이종재료 계면의 차단효과)

  • 채영석;권용수;최병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.540-547
    • /
    • 1994
  • Contact and frictional locking conditions and the effect of shielding due to contact at the facet, which could be represented by the difference in energy release rate, as a function of phase angle of loading are analyzed in this study for the case of interfacial cracks by assuming single crack-kink model. The analysis of contact effects on interfacial fracture resistance shows that relative shielding increases as the shear component was increased, which indicates a qualitative agreement with the previous experimental results.

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.

Analysis of the Structural Target Performance in order to Apply High-Strength Reinforcing Bars for the Nuclear Power Plant Structures (원전구조물의 고강도철근 적용을 위한 구조적 목표성능분석)

  • Lee, Byung-Soo;Bang, Chang-Joon;Lee, Han-Woo;Lim, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.195-196
    • /
    • 2012
  • Because of the high level of the safety and durability, a lot of reinforcing bars is placed in the concrete structure of the Nuclear Power Plant. But the overcrowding re-bars cause some problems during the construction as the diseconomy, construction delay, quality deterioration, and so on. These problems can be solved by applying the high-strength reinforcing bars to NPP structure. To achieve this, after analysing the structural target performance like the control of cracks, adherence, shear, torsion, development of reinforcement and earthquake-resistance, the results of the analysis will be reflected in the structural performance evaluation test.

  • PDF

Double controller of wind induced bending oscillations in telecom towers

  • Battista, Ronaldo C.;Pfeil, Michele S.;Carvalho, Eliane M.L.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.99-111
    • /
    • 2018
  • Wind induced large bending oscillation amplitudes in tall and slender telecommunication steel towers may lead to precocious fatigue cracks and consequent risk of collapse of these structures, many of them installed in rural areas alongside highways and in highly populated urban areas. Varying stress amplitudes at hot spots may be attenuated by means of passive control mechanical devices installed in the tower. This paper gives an account of both mathematical-numerical model and the technique applied to design and evaluate the performance of a double controller installed in existing towers which is composed by a nonlinear pendulum and a novel type of passive controller described herein as a planar motion disk mounted on shear springs. Results of experimental measurements carried out on two slender tubular steel towers under wind action demonstrate the efficiency of the double controllers in attenuating the towers bending oscillation amplitudes and consequent stress amplitudes extending the towers fatigue life.

A Study on the Application and Dispersion Characteristics Analysis of Surface SH-wave Mode (표면 SH파 모드의 분산특성 해석과 그 응용)

  • 이상용;박익근;윤종학;노승남;안형근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.61-65
    • /
    • 2001
  • A new flaw detection technique using by SH angle beam method has been discussed. The SH-wave is horizontally polarized shear wave and the surface SH wave has a characteristic of traveling along near surface layer. The surface SH wave technique is valuable for the detection of fatigue cracks at fillet weld heels which cannot be detected by other ultrasonic technique such as angle beam technique and The dispersion curves of it has simple characterization. In this work, using these beneficial chraterization, quality evaluation of spot weld with ultrasonic sound intensity of SH-wave passing through nugget area of spot weld are verified experimentally.

  • PDF

Effects with the Variation of Single Overload mode on Propagation Behavior of Fatigue Crack (단일과대하중의 작용모드 변화가 피로균열의 전파거동에 미치는 영향)

  • 송삼홍;이정무;신승만;홍석표;서기정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1508-1512
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I and mixed-mode loading overloading afterwards. We examined the observed deformation aspects, the variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. Also the loading modes of variable and constant amplitude loads have influence on the retardation behavior of fatigue cracks.

  • PDF

Seismic performance of 1/4-scale RC frames subjected to axial and cyclic reversed lateral loads

  • Bechtoula, Hakim;Sakashita, Masanobu;Kono, Susumu;Watanabe, Fumio
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.147-164
    • /
    • 2005
  • This paper summarizes an experimental study on the seismic behavior of lower stories of a mid-rise reinforced concrete frame building. Two reinforced concrete frames with two stories and one span were tested and each frame represents lower two stories of an 11-story RC frame building. Both frames were designed in accordance with Japanese design guidelines and were identical except in the variation of axial force. The tests demonstrated that the overall load-displacement relations of the two frames were nearly the same and the first-story column shear was closely related to the column axial load. The columns and beams elongated during both of the tests, with the second-floor beam elongation exceeding 1.5% of the beam clear span length. The frame with higher axial loads developed more cracks that the frame under moderate axial load.

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima;Sarfarazi, Vahab
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.669-676
    • /
    • 2018
  • The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

Fatugue Chacrateristics of Spot Welding between High Strength Steel and Galvanized Steel Sheet (II) (高張力 鋼板과 亞鉛鍍金 鋼板間의 疲勞特性 II)

  • 서창민;강성수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.229-235
    • /
    • 1989
  • The influence of monogalvanized layer to fatigue strength of two different mating metal specimens (HS*GA, HS*GAB) of high strength steels(HS) and of monogalvanized steel sheets(GA, GAB) were investigated under tensile-shear repeated load, and hardness test. Some of the results are; (1) The main cause of crack initiation and growth at high load range is plastic bending hinge. (2) In low load range, the cracks initiated near the nugget front where the hardness variation is steep.