• Title/Summary/Keyword: shear capacity

Search Result 1,931, Processing Time 0.035 seconds

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Rotordynamic Model Development and Critical Speed Estimation Through Modal Testing for the Rotor-Bearing System of a MW Class Large-Capacity Induction Motor (MW급 대용량 유도전동기 축계의 모드실험 기반 회전체 동역학 해석모델 수립 및 위험속도 예측)

  • Park, Jisu;Choi, Jae-Hak;Kim, Dong-Jun;Sim, Kyuho
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.279-289
    • /
    • 2020
  • In this paper, a method is proposed for establishing an approximate prediction model of rotor-dynamics through modal testing. In particular, the proposed method is applicable to systems that cannot be established according to conventional methods owing to the absence of information regarding the dimensions and material of the rotor-bearing system. The proposed method is demonstrated by employing a motor dynamometer driven by a 1 MW class induction motor without dimension and material information. The proposed method comprises a total of seven steps, wherein an initial model is established by incorporating approximate dimensions and material information, and the model is improved on the basis of the natural frequency characteristics of the system. During model improvement, the modification factor is introduced for adjusting the elastic modulus and shear modulus of the system. Analysis of critical speed and imbalance response indicates that the separation margin is 67% and the maximum vibration amplitude is less than the amplitude limit of 0.032 mm under the API 611 standard, which means that the motor dynamometer can stably operate at a rated speed of 1800 rpm. Hence, the obtained results validate the feasibility of the proposed method. Furthermore, for broad usage, it is necessary to accordingly apply and validate the proposed method for various rotor-bearing systems.

The behaviour of a new type of connection system for light-weight steel structures applied to roof trusses

  • Kaitila, Olli;Kesti, Jyrki;Makelainen, Pentti
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.17-32
    • /
    • 2001
  • The Rosette-joining system is a completely new press-joining method for cold-formed steel structures. One Rosette-joint has a shear capacity equal to that of approximately four screws or rivets. The Rosette thin-walled steel truss system presents a new fully integrated prefabricated alternative to light-weight roof truss structures. The trusses are built up on special industrial production lines from modified top hat sections used as top and bottom chords and channel sections used as webs which are joined together with the Rosette press-joining technique to form a completed structure easy to transport and install. A single web section is used when sufficient but can be strengthened by double-nesting two separate sections or by using two lateral profiles where greater compressive axial forces are met. An individual joint in the truss can be strengthened by introducing a hollow bolt into the joint hole. The bolt gives the connection capacity a boost of approximately 20%. A series of laboratory tests have been carried out in order to verify the Rosette truss system in practice. In addition to compression tests on individual sections of different lengths, tests have also been done on small structural assemblies and on actual full-scale trusses of a span of 10 metres. Design calculations have been performed on selected roof truss geometries based on the test results, FE-analysis and on the Eurocode 3 and U.S.(AISI) design codes.

Effects of pH-treated Fish Sarcoplasmic Proteins on the Functional Properties of Chicken Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.307-315
    • /
    • 2014
  • pH adjustment would be of advantage in improving the water holding capacity of muscle proteins. The objective of this study was to evaluate the addition of fish sarcoplasmic protein (SP) solution, which was adjusted to pH 3.0 or 12.0, neutralized to pH 7.0, and lyophilized to obtain the acid- and alkaline-treated SP samples, on the functional properties of the chicken myofibrillar protein induced by microbial transglutaminase (MTG). The solubility of alkaline-treated SP was higher than that of the acid counterpart; however, those values of the two pH-treated samples were lower than that of normal SP (p<0.05). All SP solutions were mixed with myofibrillar proteins (MP) extracted from chicken breast, and incubated with MTG. The shear stresses of MP with acid- and alkaline-treated SP were higher than that of normal SP. The thermal stability of MP mixture reduced upon adding SP, regardless of the pH treatment. The breaking force of MP gels with acid-treated SP increased more than those of alkaline-treated SP, while normal SP showed the highest value. The MP gel lightness increased, but cooking loss reduced, with the addition of SP. Smooth microstructure of the gel surface was observed. These results indicated that adjusting the pH of SP improved the water holding capacity of chicken myofibrillar proteins induced by MTG.

Effects of Bromelain and Double Emulsion on the Physicochemical Properties of Pork Loin

  • Shin, Hyerin;Kim, Hyo Tae;Choi, Mi-Jung;Ko, Eun-Young
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.888-902
    • /
    • 2019
  • Our aim was to investigate the effects of bromelain embedded in double emulsion (DE) on physicochemical properties of pork loin. We evaluated DE characteristics such as size, zeta potential, and microscopy after fabrication. We marinated meat with distilled water (DW), 1% (w/v) bromelain solution, blank DE, and 1% (w/v) bromelain loaded in double emulsion (DE E) for 0, 24, 48, and 72 h at 4℃, and prepared raw meat for control. The marinated samples were assessed for color, water holding capacity, cooking loss, moisture content, pH, protein solubility, Warner-Bratzler shear force (WBSF) and gel electrophoresis. The droplet size of 1% (w/v) bromelain embedded in DE was increased compared with blank DE (p<0.05) and values of zeta potential decreased. The increase in lightness and color difference range of the DE-treated group was lower than that of the DW-treated group (p<0.05). Moreover, treatment by immersion in 1% (w/v) DE E resulted in the highest water holding capacity values (p<0.05) and lower cooking loss values than water base treatment (p<0.05). Results for myofibrillar protein solubility and WBSF showed a similar trend. 1% (w/v) DE E showed degradation of myosin heavy chain after 48 h in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Thus, bromelain-loaded DE is useful for controlling and handling enzyme activity in food industry.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

A Study on the Skin Friction Characteristics of SIP and Numerical Model of the Interface Between SIP and Soils (SIP말뚝의 주면마찰특성 및 주면 경계요소의 수치모델에 관한 연구)

  • 천병식;임해식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.247-254
    • /
    • 2003
  • While the interests in the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP (Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests for the friction between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin friction characteristics of SIP were investigated thoroughly Also, hyperbolic model parameter fomulas which describe the friction behavior and the new non-linear unit skin friction capacity model with SM, SC soil were suggested.

Experiment Study on the Flexural-Axial Capacity of Steel-Concrete Composite Column composed of Non-Compact Section (비조밀단면을 가진 SC 합성 기둥의 휨-압축 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Bum Rae;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.431-438
    • /
    • 2005
  • A steel-concrete composite column is a recently developed composite system in which the two opposite flanges of the H-shape section are connected by welded links, and the vacant space enclosed by the flanges, web, and links is filled with concrete. Previous experiments on the SC composite column were performed to evaluate its compression and bending and shear strengths, respectively, and they showed fairly good results. In addition to thesestudies, it may be necessary to evaluate the flexural-axial capacity of an SC composite column, because itscolumn members are generally subjected to axial force and bending moment at the same time. In this study, the bending strength of an SC composite column subjected to axial compression force was investigated experimentally. The results of the study showed that the AISC-LRFD provisions representedexcessively low values compared with those of the ACI, Eurocode-4, and Japan Code provisions. The Eurocode-4 provisions represented reasonable evaluations of the strength of the SC composite column composed of a non-compact section.