• 제목/요약/키워드: shear behavior and performance

검색결과 665건 처리시간 0.032초

인공위성 카메라 주반사경 지지부에 적용되는 접착제의 전단 특성 연구 (A Study on the Shear Characteristics of Adhesives in Primary Mirror Supports of Satellite Camera)

  • 김현중;서유덕;박상훈;윤성기;이승훈;이덕규;이응식
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.808-815
    • /
    • 2007
  • The optical performance of the mirror fur satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Also the experiment should be performed in circumstances similar to real manufacturing process of mirror, because extra factors such as size effects, the adhesion effects of primer and reactions between adhesive and primer affect the properties of adhesive regions. In this research shear moduli of the adhesives are determined by using a single lap adhesively bonded joint. For the shear tests, several temperatures have been selected from $-20^{\circ}C$ to $55^{\circ}C$ which is operating temperature range of the adhesive. In the case of linear behavior materials, shear moduli are calculated through a linear curve fitting. Shear stress-strain relation is obtained by using an exponential curve fitting for material which shows non-linear behavior. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics and adaptability of the adhesives are discussed regarding their temperature sensitivity.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.

접합 조건 및 횡구속 조건에 따른 초고성능 프리캐스트 PSC 교량 접합부의 전단 거동에 관한 실험적 연구 (Experimental Study on the Shear Behavior of Ultra High Performance Precast PSC Bridge Joint with Joint Type and Lateral Force)

  • 이창홍;김영진;진원종;최은석
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.379-387
    • /
    • 2011
  • 초고성능콘크리트(UHPC)의 개발은 재료 역학적 특성면에서 기존의 일반 및 고성능 콘크리트에 비해 월등한 역학적 성능을 발휘하는 것으로 인식되고 있으나, 이에 관한 시공성 및 구조적 안전성에 대해서는 향후 많은 수정 및 보완 작업을 필요로 함이 예상되어진다. 이 연구에서는 UHPC를 적용한 프리캐스트 접합부의 전단 거동 특성의 분석을 위해 접합부 사이에 전단키를 설치한 경우의 접합 방식 및 횡구속 응력에 따른 전단 거동 특성 실험을 수행하였다. 실험 결과 에폭시 접합을 이용한 UHPC 접합의 경우가 현장 타설을 모사한 일체 타설의 경우보다 파괴 하중 및 전단 저항 응력면에서 우수함을 보였고, 횡구속 응력의 증가에 의해 전단 응력은 증가되지만, 횡구속 응력과 전단 응력 사이의 상호 효과에 따른 최적 임계 횡구속 응력이 존재하고 있음을 제시할 수 있었다.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석 (Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF)

  • 강석봉;임병진
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

강섬유를 사용한 전단보강의 효율성 (The Effectiveness of Steel Fibers as Shear Reinforcement)

  • 갈경완;이득행;방용식;조해창;강주오;김강수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.59-60
    • /
    • 2009
  • 강섬유는 콘크리트에 비해 연성적인 거동, 우수한 균열제어 성능 및 전단보강 성능 때문에 최근 보강재 또는 합성재로 주목 받고 있다. 특히, 강섬유 혼입에 따른 전단강도의 증진 효과 때문에 이 분야에 대한 상당한 실험적 연구들이 진행되었다. 그러나 강섬유 보강 콘크리트 부재의 복잡한 전단거동은 여전히 명확히 이해되고 있지 않으며, 실험 데이터도 아직 부족한 편이다. 따라서, 이 연구에서는 강섬유를 혼입한 콘크리트 휨 부재 4개를 제작하여 전단실험을 수행하여 강섬유의 전단보강 효율성을 평가하고자 하였다. 실험결과, 강섬유의 혼입율이 증가할수록 부재의 전단성능이 향상됨을 확인하였다.

  • PDF

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.