• Title/Summary/Keyword: shear band

Search Result 182, Processing Time 0.042 seconds

Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

Modelling of Shear Localisation in Geomaterials

  • Lee, Jun-Seok;Pan
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-32
    • /
    • 1997
  • In this paper, an enhanced finite element model based on homogenisation technique is proposed to capture the localized failure mode of the intact rock masses. For this, bifurcation analysis at the element level is performed and, once the bifurcation is detected, equivalent material properties of the shear band and neighbouring intact rock are used to trace the post -peak behaviour of the material. It is demonstrated that mesh sensitivity of the strain softening model is overcome and progressive failure mode of rock specimen can be simulated relaistically. Furthermore, the numerical results show that the crack propagation and final failure mode can be captured with relatively coarse meshes and compares well with the experimental data available.

  • PDF

The Influence of Microstructures on the Change of Monotonic Tensile Fracture Mode in Al-Li-Cu-Zr Alloy with Ageing (Al-Li-Cu-Zr합금의 시효에 따른 인장파괴모드변화에 미치는 미세조직의 영향)

  • Chung, D.S.;Lee, S.J.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.212-218
    • /
    • 1996
  • To clarify the influence of precipitation microstructure and inclusion on the monotonic tensile fracture behaviors in 2090 alloy aged at $180^{\circ}C$, the detailed measurement of hardness, tensile strength, elongation and the observation of scanning electron micrography, transmision electron micrography have been carried out. The transgranular shear ductile fracture has been observed in specimen quenched after solution treatment at $500^{\circ}C$ for 45min. While the under-aged specimen was fractured in both transgranular shear ductile and intergranular fracture mode, the fracture mode of peak-aged and over-aged alloy was predominantly intergranular fracture. The fracture behavior of each ageing condition was influenced by the change of precipitation microstructural features. In the case of peak-aged and over-aged alloys, the coarse and heterogeneous slip band caused by both shearable nature of the ${\delta}^{\prime}(Al_3Li)$ precipitates and PFZ along the high angle grain boundary aid the localization of deformation, resulting in low energy intergranular fracture. It was also estimated that the fractured T-type intermetallic phases (inclusion) and the equilibrium ${\delta}$(AlLi) phases which were formed at grain boundaries palyed an important role in promoting intergranular fracture mode.

  • PDF

Induction Mechanism of Planar Arrangement in Cholesteric Liquid Crystals (콜레스테릭 액정의 Planar 배열 유도 메카니즘)

  • Jung, Gap-Ha;Lee, Mong-Ryong;Seo, In-Seon;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The induction mechanisms of planar arrangements in cholesteric liquid crystals (CLC) which showed selective reflections of visible light were investigated by measuring the selective reflectivity and FTIR peak intensity of $C{\equiv}N$ stretching band. Although the planar arrangement of CLC was not as perfectly induced as the cases prepared with using alignment layers, it could be also induced by stretching polymer substrate or by applying shear forces. The planar arrangements were induced by forming CLC helical structures on top of liquid crystal molecules which were in contact with the substrate and oriented all in the same direction.

Modification of Site Classification System for Amplification Factors considering Geotechnical Conditions in Korea (국내 지반 특성에 따른 합리적 증폭 계수의 결정을 위한 지반 분류 체계 개선 방안 고찰)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.90-101
    • /
    • 2005
  • For the site characterization at two representative inland areas, Gyeongju and Hongsung, in Korea, in-situ seismic tests containing boring investigations and resonant column tests were performed and site-specific ground response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in the western US, from which the site classification system and site coefficients in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity to 30 m, Vs30 ranging between 250 and 650 m/s. Based on the acceleration response spectra determined from the site-specific analyses, the site coefficients specified in the Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients were re-evaluated and the preliminary site classification system was introduced accounting for the local geologic conditions on the Korean peninsula.

  • PDF

Estimation of Site Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역의 부지 응답 특성 평가)

  • Sun, Chang-Guk;Bang, Eun-Seok;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.125-132
    • /
    • 2006
  • To estimate the local site effects at two town fortress areas where stone parapets were collapsed during historical earthquakes, site characteristics were evaluated using borehole drillings and seismic tests and equivalent-linear site response analyses were conducted based on the shear wave velocity (Vs) profiles determined from site investigations. The study sites are categorized as site classes C and B according to the mean Vs to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in short period range of 0.06 to 0.16 sec. For site class C in the study areas, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_{\alpha}$ and $F_\nu$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the characteristics showing high amplification in short period range, which can result in the collapse of stone parapets having the short natural period.

  • PDF

Combined Effects of High Pressure and Heat on Shear Value and Histological Characteristics of Bovine Skeletal Muscle

  • Rusman, H.;Gerelt, B.;Yamamoto, S.;Nishiumi, T.;Suzuki, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.994-1001
    • /
    • 2007
  • Changes in shear force value, transverse sections, myofibrils and intramuscular connective tissue of bovine skeletal muscle exposed to the combination of high-pressure up to 400 MPa and heat (30 and $60^{\circ}C$) were studied. The shear force value decreased by pressure-heat treatment up to 200 MPa at 30 and $60^{\circ}C$, and then slightly increased over 200 MPa at $30^{\circ}C$. Shear force values of treated muscles were lower than those of untreated ones. Gaps between muscle fibers in the untreated muscle were a little clear, and then they became very clear in the treated muscles up to 200 MPa at 30 and $60^{\circ}C$. However, the gaps reduced significantly over 200 MPa at $30^{\circ}C$. The remarkable rupture of I-band and loss of M-line materials progressed in the myofibrils with increasing pressure applied. However, degradation and loss of the Z-line in myofibrils observed in the muscle treated at $60^{\circ}C$ was not apparent in the muscle treated at $30^{\circ}C$. The length of the sarcomere initially contracted by pressure-heat treatment of 100 MPa at $30^{\circ}C$ seemed to have recovered with increase of the pressure up to 400 MPa. In the muscle treated at $60^{\circ}C$, the length of sarcomere gradually decreased with increase of the pressure up to 400 MPa. In the treated muscles, changes in the honeycomb-like structure of endomysium were observed and accelerated with increase of the pressure. A wavy appearance clearly observed at the inside surface of endomysium in the untreated muscles gradually decreased in the treated muscles with increase of the pressure. Tearing of the membrane was observed in the muscles treated over 150 MPa at $30^{\circ}C$, as observed in the sample pressurized at 100 MPa at $60^{\circ}C$. The roughening, disruption and fraying of the membrane were observed over 200 MPa at $60^{\circ}C$. From the results obtained, the combination of high-pressure and heat treatments seems to be effective to tenderize tough meat. The shear force value may have some relationship with deformation of intramuscular connective tissue and myofibrils.

Dynamic Deformation Characteristics of Fiber Reinforced Soils (섬유혼합토의 동적물성변형특성)

  • Jung, Sung-Yong;Kim, Dae-Il;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.968-976
    • /
    • 2004
  • In the paper, deformation characteristics of fiber-mixed-soils, mixed polypropylene staple fibers of 0.3% fiber content with sands of various gradation, and their effectiveness of reinforcement were evaluated. A series of Resonant Column tests were performed with specimens prepared with varying Uniformity Coefficient and constant Curvature Coefficient. Maximum shear moduli 01 fiber-mixed-soils were increased by up to 30% and modulus reduction was also restrained in nonlinear range. Normalized shear modulus reduction curves of fiber-mixed-soils shift close to the upper limit of Seed curd Idriss's curves and are located within narrower band than those of unmixed soils, which proves the effectiveness on stiffness increment by reinforcing soils with fibers.

  • PDF

Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy (초음파공명분광법에 의한 Zr-2.5Nb 압력관 재료의 고온 이방성 탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Sung-Soo;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ${\sim}500^{\circ}C$. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near $150^{\circ}C$. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium.