Browse > Article

Induction Mechanism of Planar Arrangement in Cholesteric Liquid Crystals  

Jung, Gap-Ha (Materials Research Center for Information Display, Kyung Hee University)
Lee, Mong-Ryong (Materials Research Center for Information Display, Kyung Hee University)
Seo, In-Seon (Materials Research Center for Information Display, Kyung Hee University)
Song, Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
Publication Information
Polymer(Korea) / v.35, no.3, 2011 , pp. 272-276 More about this Journal
Abstract
The induction mechanisms of planar arrangements in cholesteric liquid crystals (CLC) which showed selective reflections of visible light were investigated by measuring the selective reflectivity and FTIR peak intensity of $C{\equiv}N$ stretching band. Although the planar arrangement of CLC was not as perfectly induced as the cases prepared with using alignment layers, it could be also induced by stretching polymer substrate or by applying shear forces. The planar arrangements were induced by forming CLC helical structures on top of liquid crystal molecules which were in contact with the substrate and oriented all in the same direction.
Keywords
cholesteric liquid crystals; planar arrangement; induction mechanism; selective reflection; FTIR spectrometer;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. Obi, S. Morino, and K. Ichimura, Chem. Mater., 11, 656 (1999).   DOI   ScienceOn
2 K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997).   DOI   ScienceOn
3 H. Tomita, K. Kudo, and K. Ichimura, Liq. Cryst., 20, 171 (1996).   DOI   ScienceOn
4 J. Lim, S. Choi, W. Kim, S. S. Kim, and K. Song, Polymer(Korea), Vol. 29, No. 4, 413 (2005)
5 K. Ha, H. Ahn, and C. Son, Liq. Cryst., 33, 8, 935 (2006)   DOI   ScienceOn
6 R. Bhargava, B. G. Wall, and J. L. Koenig, Appl. Spect., 54, 4 (2000)
7 A. Hatta, Mol. Cryst. Liq. Cryst., 72, 195 (1981)
8 A. Kazunori, I. Atsuko, and K. Shunsuke, Jpn. J. Appl. Phys., 37, 6482, part1, 12A (1998)   DOI
9 G. Jung, I. Seo, M. Lee, S. Choi, and K. Song, Polymer(Korea), 34, 242 (2010)
10 A. Dyaduysha, A. Khizhnyak, T. Marusii, V. Reshetnyak, Y. Reznikov, and W. Park, Jpn. J. Appl. Phys., 34, 1000 (1995)   DOI
11 D. J. Broer, G. N. Mol, and J. A. M. M. van Haaren, J. Adv. Mater., 11, 573 (1999).   DOI   ScienceOn
12 Y. J. Kwon, W. J. Lee, S. J. Paek, I. Kim, and K. Song, Mol. Cryst. Liq. Cryst., 377, 325 (2002).   DOI
13 Y. Kwon, W. Lee, B. Kim, I. Kim, and K. Song, Polymer(Korea), 30, 422 (2006).
14 D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, Phys. Rev. E, 73, 061701 (2006).   DOI
15 J. Park, B. Kim, W. Kim, I. Kim, and K. Song, Polymer(Korea), 30, 182 (2006).
16 B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002)   DOI   ScienceOn
17 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Oxford Clarendon Press, Oxford, 1993.
18 N. Boiko and V. Shibaev, Inter. J. Polym. Mater., 45, 533 (2000).   DOI
19 M. Schadt and P. Gerber, Mol. Cryst. Liq. Cryst., 65, 241 (1981).   DOI
20 D. A. Dunmur, K. Toriyama, D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Physical Properties of Liquid Crystals, Wiley-VCH, Weinheim, 1999.
21 M. Lee, H. Jang, S.-W. Choi, and K. Song, Bull. Korean Chem. Soc., 30, 7 (2009).
22 B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, Appl. Phys. Lett., 92, 061101 (2008).   DOI   ScienceOn
23 T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, J. Mater. Chem., 18, 3040 (2008).   DOI   ScienceOn