• Title/Summary/Keyword: shear and normal deformation effects

Search Result 60, Processing Time 0.024 seconds

Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations

  • Merazka, Bouzid;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.631-643
    • /
    • 2021
  • The aim of this work is to study the hygro-thermo-mechanical bending responses of simply supported FG plate resting on a Winkler-Pasternak elastic foundation. The effect transverse shear strains is taken into account in which the zero transverse shear stress condition on the top and bottom surfaces of the plate is ensured without using any shear correction factors. The developed model contains only four unknowns variable which is reduced compared to other HSDTs models. The material properties of FG-plate are supposed to vary across the thickness of the plate according to power-law mixture. The differential governing equations are derived based on the virtual working principle. Numerical outcomes of bending analysis of FG plates under hygro-thermo-mechanical loads are performed and compared with those available in the literature. The effects of the temperature, moisture concentration, elastic foundation parameters, shear deformation, geometrical parameters, and power-law-index on the dimensionless deflections, axial and transverse shear stresses of the FG-plate are presented and discussed.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Application of artificial intelligence for solving the engineering problems

  • Xiaofei Liu;Xiaoli Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • Using artificial intelligence and internet of things methods in engineering and industrial problems has become a widespread method in recent years. The low computational costs and high accuracy without the need to engage human resources in comparison to engineering demands are the main advantages of artificial intelligence. In the present paper, a deep neural network (DNN) with a specific method of optimization is utilize to predict fundamental natural frequency of a cylindrical structure. To provide data for training the DNN, a detailed numerical analysis is presented with the aid of functionally modified couple stress theory (FMCS) and first-order shear deformation theory (FSDT). The governing equations obtained using Hamilton's principle, are further solved engaging generalized differential quadrature method. The results of the numerical solution are utilized to train and test the DNN model. The results are validated at the first step and a comprehensive parametric results are presented thereafter. The results show the high accuracy of the DNN results and effects of different geometrical, modeling and material parameters in the natural frequencies of the structure.

Analysis of Rock Masses and Rock Supports by Rigid Block Method (강성블록법에 의한 지반 및 지보재 해석)

  • 김문겸;황학주;엄인수;허택녕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.84-90
    • /
    • 1991
  • Underground structures usually consist of rock masses or concretes which can be cracked or have cracks. This study aims to develop an analysis program which can deal with the effect of discontinuous behavior due to those cracks using the block theory. It is assumed that rock masses form blocks along the discontinuity lines, and deformation within the block is relatively small. The behavior of discontinuity plane of the structures is divided into sliding along the discontinuity plane. separation of discontinuity by tensile force, and degradation of asperity angle of discontinuity plane by external force with sliding of rock Basses. These behaviors are implemented using constitutive relation and relevent load-displacement relation defined through normal and shear stiffnesses. Time varying displacements and block velocities are calculated by explicit time stepping algorithm. The effect of rock supports including rockbolts is also considered, and the tending effects which occurs in relatively thin lining is also considered.

  • PDF

Nonlocal bending characteristics of nanoplate reinforced by functionally graded GPLs exposed to thermo-mechanical loads resting on the Pasternak's foundation

  • Masoud Kiani;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.97-114
    • /
    • 2023
  • The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.

Accuracy of combination rules and individual effect correlation: MDOF vs SDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de, Leon-Escobedo, David;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.353-379
    • /
    • 2012
  • The accuracy of the 30% and SRSS rules, commonly used to estimate the combined response of structures, and some related issues, are studied. For complex systems and earthquake loading, the principal components give the maximum seismic response. Both rules underestimate the axial load by about 10% and the COV of the underestimation is about 20%. Both rules overestimate the base shear by about 10%. The uncertainty in the estimation is much larger for axial load than for base shear, and, for axial load, it is much larger for inelastic than for elastic behavior. The effect of individual components may be highly correlated, not only for normal components, but also for totally uncorrelated components. The rules are not always inaccurate for large values of correlation coefficients of the individual effects, and small values of such coefficients are not always related to an accurate estimation of the response. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. In the general case, the level of underestimation or overestimation depends on the degree of correlation of the components, the type of structural system, the response parameter, the location of the structural member and the level of structural deformation. The codes should be more specific regarding the application of these rules. If the percentage rule is used for MDOF systems and earthquake loading, at least a value of 45% should be used for the combination factor.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan;Liming Dai;Haixing Zhao
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.