• Title/Summary/Keyword: shear after flexural yielding

Search Result 26, Processing Time 0.019 seconds

Shear Deterioration of RC Beams after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단 성능 저하)

  • 이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.583-588
    • /
    • 2000
  • While a great progress has been achieved in predicting the ultimate shear strength in the RC members, it is a fact that a method in order to estimate the ductility of RC members still has to be looked for. This study theoretically predict the ductility of RC beams which fail in shear after flexural yielding by considering the deterioration of concrete strength in plastic hinge region.

  • PDF

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

Behaviour of RC Beams with non-bonded flexural reinforcement: A numerical experiment

  • Kotsovou, Gregoria M.;Kotsovos, Gerasimos M.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.165-178
    • /
    • 2016
  • The present work is concerned with a numerical investigation of the behaviour of reinforced-concrete beams with non-bonded flexural tension reinforcement. The numerically-established behaviour of such beams with and without transverse reinforcement is compared with its counterpart of similar beams with bonded reinforcement. From the comparison, it is found that the development of bond anywhere within the shear span inevitably leads to inclined cracking which is the cause of 'shear' failure. On the other hand, the lack of bond within the shear span of the beams is found, not only to prevent cracking within the shear span, but, also, to lead to a flexural type of failure preceded by the formation of horizontal splitting of concrete in the compressive zone. It is also found that delaying the extension of horizontal splitting through the provision of transverse reinforcement in the beam mid span can lead to flexural failure after yielding of the tension reinforcement. Yielding of the tension reinforcement before the horizontal splitting of the compressive zone may also be achieved by reducing the amount of the latter reinforcement.

Shear Ductile Capacity of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading (반복 하중을 받는 철근콘크리트 보의 전단 연성)

  • Na, Hyun-Jong;Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.285-288
    • /
    • 2006
  • This paper provides a method to predict the ductile capacity of reinforced concrete beams that fail in shear after flexural yielding. The proposed method takes into account shear strength deterioration in the plastic hinge region of RC beams. The shear contribution of the concrete in the plastic hinge region decreases after flexural yielding of the beam due to a decrease in the effective compressive strength of the concrete. To verify the shear strength and the corresponding ductility of the proposed method, 8 RC beams were tested under reversed cyclic loading.

  • PDF

Deformability models for flexural-shear failure of limited ductility (휨-전단 파괴의 한정 연성도 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • Deformability of RC members in shear after flexural yielding is limited and controlled by governing failure modes and material strength. Shear strength of members in D-regions has been explained by a direct load path (direct strut or arch action) and indirect load path (fan action or truss action). Indirect load path including truss action and fan action rely on bond along tension ties. Generally, superposition of two actions results in total shear strength when shear failure modes control. The ultimate deformation depends on controlling failure modes and thereby, their force transfer patterns. Proposed models are capable of explaining of limited deformability of RC members in D-regions.

  • PDF

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Development of a Shear Yielding Steel Damper for Concentrically Braced Frames (중심가새골조의 내진성능향상을 위한 전단항복댐퍼의 개발)

  • Ghamar, Ali;Jeong, Seong-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2021
  • In this study, the use of a steel yielding damper is considered as an appropriate method to enhance the behavior of CBFs and a steel damper which is economical and straightforward to construct and replace after a severe earthquake is developed. The proposed damper was investigated experimentally and numerically. In addition, a parametric study was performed to evaluate the effect of the three types of damper mechanisms (shear, shear-flexural, and flexural) on the behavior of the proposed damper. The experimental results, as well as the numerical results, indicate that the shear damper exhibits better performance than the other dampers in terms of strength and stiffness.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.