• Title/Summary/Keyword: shared parallel systems

Search Result 68, Processing Time 0.042 seconds

Performance Comparison of Synchronization Methods for CC-NUMA Systems (CC-NUMA 시스템에서의 동기화 기법에 대한 성능 비교)

  • Moon, Eui-Sun;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.394-400
    • /
    • 2000
  • The main goal of synchronization is to guarantee exclusive access to shared data and critical sections, and then it makes parallel programs work correctly and reliably. Exclusive access restricts parallelism of parallel programs, therefor efficient synchronization is essential to achieve high performance in shared-memory parallel programs. Many techniques are devised for efficient synchronization, which utilize features of systems and applications. This paper shows the simulation results that existing synchronization methods have inefficiency under CC-NUMA(Cache Coherent Non-Uniform Memory Access) system, and then compares the performance of Freeze&Melt synchronization that can remove the inefficiency. The simulation results present that Test-and-Test&Set synchronization has inefficiency caused by broadcast operation and the pre-defined order of Queue-On-Lock-Bit (QOLB) synchronization to execute a critical section causes inefficiency. Freeze&Melt synchronization, which removes these inefficiencies, has performance gain by decreasing the waiting time to execute a critical section and the execution time of a critical section, and by reducing the traffic between clusters.

  • PDF

Parallel Implementations of Digital Focus Indices Based on Minimax Search Using Multi-Core Processors

  • HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.542-558
    • /
    • 2023
  • A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.

A Data Transfer Method of the Sub-Cluster Group based on the Distributed and Shared Memory (분산 공유메모리를 기반으로 한 서브 클러스터 그룹의 자료전송방식)

  • Lee, Kee-Jun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.6
    • /
    • pp.635-642
    • /
    • 2003
  • The radical development of recent network technology provides the basic foundation which can establish a high speed and cheap cluster system. It is a general trend that conventional cluster systems are built as the system over a fixed level based on stabilized and high speed local networks. A multi-distributed web cluster group is a web cluster model which can obtain high performance, high efficiency and high availability through mutual cooperative works between effective job division and system nodes through parallel performance of a given work and shared memory of SC-Server with low price and low speed system nodes on networks. For this, multi-distributed web cluster group builds a sub-cluster group bound with single imaginary networks of multiple system nodes and uses the web distributed shared memory of system nodes for the effective data transmission within sub-cluster groups. Since the presented model uses a load balancing and parallel computing method of large-scale work required from users, it can maximize the processing efficiency.

Proposition and Evaluation of Parallelism-Independent Scheduling Algorithms for DAGs of Tasks with Non-Uniform Execution Time

  • Kirilka Nikolova;Atusi Maeda;Sowa, Masa-Hiro
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.289-293
    • /
    • 2000
  • We propose two new algorithms for parallelism-independent scheduling. The machine code generated from the compiler using these algorithms in its scheduling phase is parallelism-independent code, executable in minimum time regardless of the number of the processors in the parallel computer. Our new algorithms have the following phases: finding the minimum number of processors on which the program can be executed in minimal time, scheduling by an heuristic algorithm for this predefined number of processors, and serialization of the parallel schedule according to the earliest start time of the tasks. At run time tasks are taken from the serialized schedule and assigned to the processor which allows the earliest start time of the task. The order of the tasks decided at compile time is not changed at run time regardless of the number of the available processors which means there is no out-of-order issue and execution. The scheduling is done predominantly at compile time and dynamic scheduling is minimized and diminished to allocation of the tasks to the processors. We evaluate the proposed algorithms by comparing them in terms of schedule length to the CP/MISF algorithm. For performance evaluation we use both randomly generated DAGs (directed acyclic graphs) and DACs representing real applications. From practical point of view, the algorithms we propose can be successfully used for scheduling programs for in-order superscalar processors and shared memory multiprocessor systems. Superscalar processors with any number of functional units can execute the parallelism-independent code in minimum time without necessity for dynamic scheduling and out-of-order issue hardware. This means that the use of our algorithms will lead to reducing the complexity of the hardware of the processors and the run-time overhead related to the dynamic scheduling.

  • PDF

DEVS 형식론을 이용한 다중프로세서 운영체제의 모델링 및 성능평가

  • 홍준성
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.32-32
    • /
    • 1994
  • In this example, a message passing based multicomputer system with general interdonnedtion network is considered. After multicomputer systems are developed with morm-hole routing network, topologies of interconecting network are not major considertion for process management and resource sharing. Tehre is an independeent operating system kernel oneach node. It communicates with other kernels using message passingmechanism. Based on this architecture, the problem is how mech does performance degradation will occur in the case of processor sharing on multicomputer systems. Processor sharing between application programs is veryimprotant decision on system performance. In almost cases, application programs running on massively parallel computer systems are not so much user-interactive. Thus, the main performance index is system throughput. Each application program has various communication patterns. and the sharing of processors causes serious performance degradation in hte worst case such that one processor is shared by two processes and another processes are waiting the messages from those processes. As a result, considering this problem is improtant since it gives the reason whether the system allows processor sharingor not. Input data has many parameters in this simulation . It contains the number of threads per task , communication patterns between threads, data generation and also defects in random inupt data. Many parallel aplication programs has its specific communication patterns, and there are computation and communication phases. Therefore, this phase informatin cannot be obtained random input data. If we get trace data from some real applications. we can simulate the problem more realistic . On the other hand, simualtion results will be waseteful unless sufficient trace data with varisous communication patterns is gathered. In this project , random input data are used for simulation . Only controllable data are the number of threads of each task and mapping strategy. First, each task runs independently. After that , each task shres one and more processors with other tasks. As more processors are shared , there will be performance degradation . Form this degradation rate , we can know the overhead of processor sharing . Process scheduling policy can affects the results of simulation . For process scheduling, priority queue and FIFO queue are implemented to support round-robin scheduling and priority scheduling.

  • PDF

A Performance Evaluation of Parallel Color Conversion based on the Thread Number on Multi-core Systems (멀티코어 시스템에서 쓰레드 수에 따른 병렬 색변환 성능 검증)

  • Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.73-76
    • /
    • 2014
  • With the increasing popularity of multi-core processors, they have been adopted even in embedded systems. Under this circumstance many multimedia applications can be parallelized on multi-core platforms because they usually require heavy computations and extensive memory accesses. This paper proposes an efficient thread-level parallel implementation for color space conversion on multi-core CPU. Thread-level parallelism has been becoming very useful parallel processing paradigm especially on shared memory computing systems. In this work, it is exploited by allocating different input pixels to each thread for concurrent loop executions. For the performance evaluation, this paper evaluate the performace improvements for color conversion on multi-core processors based on the processing speed comparison between its serial implementation and parallel ones. The results shows that thread-level parallel implementations show the overall similar ratios of performance improvements regardless of different multi-cores.

Design and Implementation of KDSM(KAIST Distributed Shared Memory) System (KDSM(KAIST Distributed Shared Memory) 시스템의 설계 및 구현)

  • Lee, Sang-Kwon;Yun, Hee-Chul;Lee, Joon-Won;Maeng, Seung-Ryoul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.257-264
    • /
    • 2002
  • In this paper, we give a detailed description of KDSM(KAIST Distributed Shared Memory) system. KDSM is implemented as a user-level library running on Linux 2.2.13, and TCP/IP is used for communication. KDSM uses page-based invalidation protocol, multiple-writer protocol, and supports HLRC(Home-based Lazy Release Consistency) memory consistency model. To evaluate performance of KDSM, we executed 4 scientific applications and compared the result to JLAJLA. The results showed that performance of KDSM almost equal to JIAJIA for 2 applications and performance of KDSM is better than JIAJIA for 2 applications.

New execution model for CAPE using multiple threads on multicore clusters

  • Do, Xuan Huyen;Ha, Viet Hai;Tran, Van Long;Renault, Eric
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.825-834
    • /
    • 2021
  • Based on its simplicity and user-friendly characteristics, OpenMP has become the standard model for programming on shared-memory architectures. Checkpointing-aided parallel execution (CAPE) is an approach that utilizes the discontinuous incremental checkpointing technique (DICKPT) to translate and execute OpenMP programs on distributed-memory architectures automatically. Currently, CAPE implements the OpenMP execution model by utilizing the DICKPT to distribute parallel jobs and their data to slave machines, and then collects the results after executing these distributed jobs. Although this model has been proven to be effective in terms of performance and compatibility with OpenMP on distributed-memory systems, it cannot fully exploit the capabilities of multicore processors. This paper presents a novel execution model for CAPE that utilizes two levels of parallelism. In the proposed model, we add another level of parallelism in the form of multithreaded processes on slave machines with the goal of better exploiting their multicore CPUs. Initial experimental results presented near the end of this paper demonstrate that this model provides significantly enhanced CAPE performance.

Smart City Governance Logic Model Converging Hub-and-spoke Data Management and Blockchain Technology (허브 앤 스포크형 데이터 관리 및 블록체인 기술 융합 스마트도시 거버넌스 로직모델)

  • Choi, Sung-Jin
    • Journal of KIBIM
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2024
  • This study aims to propose a smart city governance logic model that can accommodate more diverse information service systems by mixing hub-and-spoke and blockchain technologies as a data management model. Specifically, the research focuses on deriving the logic of an operating system that can work across smart city planning based on the two data governance technologies. The first step of the logic is the generation and collection of information, which is first divided into information that requires information protection and information that can be shared with the public, and the information that requires privacy is blockchainized, and the shared information is integrated and aggregated in a data hub. The next step is the processing and use of the information, which can actively use the blockchain technology, but for the information that can be shared other than the protected information, the governance logic is built in parallel with the hub-and-spoke type. Next is the logic of the distribution stage, where the key is to establish a service contact point between service providers and beneficiaries. Also, This study proposes the establishment of a one-to-one data exchange relationship between information providers, information consumers, and information processors. Finally, in order to expand and promote citizen participation opportunities through a reasonable compensation system in the operation of smart cities, we developed virtual currency as a local currency and designed an open operation logic of local virtual currency that can operate in the compensation dimension of information.

Improving Performance of Large Sparse Linear System Solvers On Distributed Memory Systems By Asynchronous Algorithms (비동기 알고리즘을 이용한 분산 메모리 시스템에서의 초대형 선형 시스템 해법의 성능 향상)

  • Park, Pil-Seong;Sin, Sun-Cheol
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.439-446
    • /
    • 2001
  • The main stream of parallel programming today is using synchronous algorithms, where processor synchronization for correct computation and workload balance are essential. Overall performance of the whole system is dependent upon the performance of the slowest processor, if workload is not well-balanced or heterogeneous clusters are used. Asynchronous iteration is a way to mitigate such problems, but most of the works done so far are for shared memory systems. In this paper, we suggest and implement a parallel large sparse linear system solver that improves performance on distributed memory systems like clusters by reducing processor idle times as much as possible by asynchronous iterations.

  • PDF