• Title/Summary/Keyword: shared band

Search Result 66, Processing Time 0.023 seconds

Self-Interference Cancellation for Shared Band Transmission in Nonlinear Satellite Communication Channels

  • Jung, Sooyeob;Ryu, Joon Gyu;Oh, Deock-Gil;Yu, Heejung
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.771-781
    • /
    • 2017
  • For efficient spectral utilization of satellite channels, a shared band transmission technique is introduced in this paper. A satellite transmits multiple received signals from a gateway and terminal in the common frequency band by superimposing the signals. To improve the power efficiency as well as the spectral efficiency, a travelling wave tube amplifier in the satellite should operate near the saturation level. This causes a nonlinear distortion of the superimposed transmit signal. Without mitigating this nonlinear effect, the self-interference cannot be properly cancelled and the desired signal cannot be demodulated. Therefore, an adaptive compensation scheme for nonlinearity is herein proposed with the proper operation scenario. It is shown through simulations that the proposed shared band transmission approach with nonlinear compensation and self-interference cancellation can achieve an acceptable system performance in nonlinear satellite channels.

Dualband Shared-Aperture Microstrip Antenna for Reflectarray Feeding Structure of LEO Satellite System

  • Bagas Satriyotomo;Ji-Woong Hyun;Seongmin Pyo
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • This paper presents a new dualband shared-aperture microstrip antenna to operate in the S-Band of 2 GHz and X-Band of 8 GHz, for a Low Earth Orbit satellite antenna system. The proposed antenna incorporates two types of patches those are a rectangular loop-shaped for the S-Band and a square patch for the X-Band. Each patch are optimized for its respective operating band with minimal interference. The proposed antenna achieves a bandwidth of 16 MHz in the S-Band and 572 MHz in the X-Band. The highest gain is measured 7.14 dBi at 1.99 GHz and 7.95 dBi at 7.88 GHz. The proposed antenna exhibits half power beamwidths of 85 degree and 80 degree at 1.99 GHz and 7.88 GHz, respectively. The proposed dualband shared-aperture microstrip antenna may be a good candidate for as a feeding system of a dualband reflectarray antenna With its unidirectional radiation pattern from excellent agreement between simulation and measurement results.

Radiation Characteristics of a S / X Dual Broad Band Patch Antenna with Shared Aperture Structure (개구면 공유 구조를 가지는 S / X 이중 광대역 패치 안테나의 방사 특성)

  • Kwak, Eun-Hyuk;Lee, Yong-Seung;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.718-729
    • /
    • 2015
  • A S / X dual broad band patch antenna with shared aperture structure is fabricated. A $2{\times}2$ perforated patch is used for S-band operation and a $2{\times}2$ patch antenna array is integrated in the $2{\times}2$ perforation for X-band operation. The measurement results of a S / X dual broad band patch antenna with shared aperture structure show the broad band characteristics larger than 20 % in both bands.

A Study on the Satellite Nonlinear Effect for Shared-band Transmission (동일 위성채널 전송을 위한 위성 TWTA 비선형 영향 분석)

  • Ryu, Joon-Gyu;Jeong, Soo-Yeop;Oh, Deock-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.913-914
    • /
    • 2016
  • This paper analyzes the impact of the satellite TWTA non-linearity charateristics for shared band transmission technology to improve spectral efficiency in satellite communication system. In shared band transmission technology for star network, a hub and terminals use same frequency band. In order to receive terminals's signal a hub have to remove the its own DVB-S2 carrier. In this paper the non-linearity impact of satellite TWTA is analyzed for self-interference cancellation.

  • PDF

Analysis of Performance Requirement for Large-Scale InfiniBand-based DVSM System (대용량의 InfiniBand 기반 DVSM 시스템 구현을 위한 성능 요구 분석)

  • Cho, Myeong-Jin;Kim, Seon-Wook
    • The KIPS Transactions:PartA
    • /
    • v.14A no.4
    • /
    • pp.215-226
    • /
    • 2007
  • For past years, many distributed virtual shared-memory(DVSM) systems have been studied in order to develop a low-cost shared memory system with a fast interconnection network. But the DVSM needs a lot of data and control communication between distributed processing nodes in order to provide memory consistency in software, and this communication overhead significantly dominates the overall performance. In general, the communication overhead also increases as the number of processing nodes increase, so communication overhead is a very important performance factor for developing a large-scale DVSM system. In this paper, we study the performance scalability quantitatively and qualitatively for developing a large-scale DVSM system based on the next generation interconnection network, called the InfiniBand. Based on the study, we analyze a performance requirement of the next-coming interconnection network to be used for developing a performance-scalable DVSM system in the future.

Self-interference Cancellation for Shared Band Satellite Transmission (동일 주파수 위성 전송을 위한 자기 간섭 제거 방식)

  • Ryu, Joon-Gyu;Jeon, Hanik;Oh, Deock-Gil;Yu, Heejung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2015
  • In this paper, a shared band transmission, in which downlink signals from satellite to both earth station and user terminal are transmitted in the same frequency band, is considered. For proper operation of such shared band transmission, self-interference caused by the transmitted signal from its own transmitter should be cancelled and the desired signal from the other transmitter should be obtained. The self-interference is sent by its own transmitter and it can be easily regenerated with the estimated round-trip delay. In addition to this delay, non-linearity effects caused by power amplifiers at the earth station and satellite should be exploited. The proposed interference canceller divided into two parts: one is subtraction of the transmitted signal with delay and non-linearity effects, and the other is adoptive filter to suppressed the residual interference. Through computer simulations, the effectiveness of the proposed system is verified.

Genetic Distances of Binary Pen Shell Atrina pectinata Populations

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.26 no.3
    • /
    • pp.127-133
    • /
    • 2022
  • The seven oligonucleotides primers were consumed to produce the quantity of unique loci shared to each pen shell team (ULSEPT) and quantity of loci shared by the binary pen shell teams. 154 quantities of LSBPP, with a mediocre of 22.0 per primer, were noticed in the binary pen shell (Atrina pectinata) teams. 328 fragments were recognized in the pen shell team A (PSTA), and 257 in the pen shell team B (PSTB): 77 quantities of ULSEPT (23.48%) in the PSTA and 121 (47.08%) in the PSTB. The band-sharing amount (BS amount) between entity's no. 01 and no. 05 was the highest (0.884) between the binary PSTs. The median band-sharing amount of entities in the PSTA (0.685±0.011) was higher than in those invented from the PSTB (0.640±0.009) (p<0.05). The highest genetic distance presenting substantial molecular difference was between entities PECTINATA no. 06 and PECTINATA no. 04 (0.498). Through this study, it is possible a certain degree to contribute to increasing the cultivation of pen shells, conservation of species, protection of the natural environment, and preservation of ecosystems.

Performance Analysis of Circulator-Based Collocated Device for Wi-Fi System and WiMAX System in Shared Band (주파수대역을 공유하는 Wi-Fi 시스템과 WiMAX 시스템이 결합된 써큘레이터 기반의 공존장치 성능 분석)

  • Kim, Dong-Eun;Kim, Jong-Woo;Park, Su-Won;Rhee, Seung-Hyong;Kang, Chul-Ho;Han, Ki-Young;Kang, Hyon-Goo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.56-65
    • /
    • 2009
  • The single device that is combined more than one communication systems in shared band is called collocated system. In this paper, the collocated system is made by combination of Wi-Fi and WiMAX system. Performance of the collocated system is analysed by using two communication model, Collaborative and Non-Collaborative. To minimize the mutual interference between Wi-Fi and WiMAX system in collocated system, the circulator-based collocated system is proposed and analysed it's performance characteristics.

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

Simulation of Subnet Management for InfiniBand (채널 기반 인피니밴드의 서브넷 관리를 위한 시뮬레이션)

  • Kim, Young-Hwan;Youn, Hee-Yong;Park, Chang-Won;Lee, Hyoung-Su;Go, Jae-Jin;Park, Sang-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.535-538
    • /
    • 2002
  • InfiniBand is a switched-fabric architecture for next generation I/O systems and data centers. The InfiniBand Architecture (IBA) promises to replace bus-based architectures, such as PCI, with a switched-based fabric whose benefits include higher performance, higher RAS (reliability, availability, scalability), and the ability to create modular networks of servers and shared I/O devices. The switched-fabric InfiniBand consists of InfiniBand subnets with channel adapters, switches, and routers. In order to fully grasp the operational characteristics of InfiniBand architecture (IBA) and use them in ongoing design specification, simulation of subnet management of IBA is inevitable. In this paper, thus, we implement an IBA simulator and test some practical sample networks using it. The simulator shows the flow of operation by which the correctness and effectiveness of the system can be verified.

  • PDF