• Title/Summary/Keyword: shaper

Search Result 132, Processing Time 0.024 seconds

Robust Multi-Hump Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Multi-Hump Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.112-119
    • /
    • 2001
  • A variety of input shaper has been proposed to reduce the residual vibration of flexible structures. Multi-hump input shaper is known to be robust for parameter variations. However, existing approach should solve the more complicated nonlinear simultaneous equations to improve the robustness of the input shaper with the additional constraints. In this paper, by proposing a graphical approach which uses convolution of shaper, the multi-hump convolution input shaper could be designed even if the constraints are added for further robustness. With a mass-damper-spring model, the better performance is obtained using the proposed new multi-hump convolution input shaper.

  • PDF

An SD Shaper to Suppress Residual Vibration at an Arbitrarily Specified Duration (임의 성형시간에 잔류진동을 제거할 수 있는 SD성형기)

  • Brian Byunghyun Kang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.127-134
    • /
    • 2023
  • Recently, various input shapers have been introduced to reduce residual vibrations of flexible robots. However, there have been no studies on the design of an input shaper that can suppress residual vibration at an arbitrarily specified duration. In this paper, a novel input shaper called an SD (specified-duration) shaper is proposed for an undamped or underdamped system, which can suppress residual vibration at an arbitrarily given specified duration. If the specified duration is larger than a half period, a positive SD shaper composed of all positive impulses is designed, and if the specified duration is smaller than a half period, a negative SD shaper including a negative impulse is designed. As the specified duration is increased every half period after a half period, the number of impulses of the positive SD shaper is increased one by one, and the robustness of the SD shaper to modeling errors is increased. The performance of the SD shaper is analyzed through simulation studies for an undamped and underdamped second-order systems. The validity of the SD shapers is demonstrated experimentally using an experimental device that can generate container transport motions.

Reduction of Residual Vibration for 2 Axes Overhead Crane by Input Shaping (입력성형기법에 의한 2축 천정크레인의 잔류진동 감소)

  • 박운환;이재원;노상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.181-188
    • /
    • 2000
  • Input shaping is a method fur reducing residual vibration. Vibration is eliminated by convolving an input shaper, which is a sequence of impulses, with the desired system command. It has been applied to robot with a flexible manipulator. But it can be applied to the reduction of residual vibration far overhead crane. In this paper, input shaping shows good performance for anti-sway of overhead crane. In the z-domain, we designed an input shaper and calculated the sensitivity of it. If sensitivity is calculated in the z-domain, the shapes of sensitivity curves are expected easily. Accordingly, it is easy to design an input shaper in the z-domain. We compared the response of a system with shaper to it without that. Also, we compared El shaper to ZV shaper in view of robustness.

  • PDF

Control of the Residual Vibration of Crane Using Equivalent Input Shaper (등가입력성형기를 이용한 크레인의 잔류진동 제어)

  • Park, Un-Hwan;Lee, Jae-Won;Noh, Sang-Hyun;Yoon, Ji-Sup;Park, Byung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.135-142
    • /
    • 2002
  • Input shaping is a method for reducing residual vibration in computer controlled machines. Vibration is eliminated by convolving a sequence of impulses, an input shaper, with a desired system command to produce a shaped input. This paper shows the shape of sensitivity curve of input shaper as impulse interval T and analysis of robustness for input shaper on the z-plane. And a method is presented for designing equivalent input shaper considering sampling time $T_s$. And then we applied equivalent input shaper to crane system.

m-shaper: A Sketch Drawing System for Musical Shape Generation (m-shaper: 음악적 형태 생성을 위한 스케치 드로잉 시스템)

  • Kwon, Doo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1381-1387
    • /
    • 2015
  • This paper proposes a sketch drawing system called m-shaper for musical shape generation. Through simple sketch drawing, users can generate musical shape configuration which can be played by a computer. One key ingredient of the process is a unique concept for the interactive musical shape generation that combines shape and sound based on the designers' manual inputs. m-shaper captures the numerical values of drawing characteristics and determines how the musical notes and shapes can be generated. Using a tablet, four sketch movements are captured such as pressure, tilt, rotation and speed. Each point of a shape corresponds to a certain musical note that represents a type of instrument, duration, pitch, and octave. The current m-shaper has been developed as a computational tool for supporting the schematic design process. Designers in m-shaper draw geometric sketches with a musical inspiration and explore possible conceptual forms. They also can control the parameters for results and transform their sketch drawing.

Electric Field Distribution of High Voltage Polymer Bushing with Inner Field Shaper Designs (초고압 폴리머 부싱의 내부쉴드 형상에 따른 전계분포 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.369-370
    • /
    • 2008
  • This paper describes the electric field distribution of high voltage polymer bushing with inner field shaper designs. The field control can be achieved by means of the designs of such internal field shaper. But high electric stress occurred between field shaper and central conductor by the closely space. In accordance, the floating and ring shield designs was importance for electric stress grading at critical parts of the bushing. The bushing has a central conductor, and internal ring shield or floating shield, gaps are formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing.

  • PDF

Design of Robust Convolution Input Shaper for the Variation of Frequency and Damping Ratio (주파수와 감쇠비 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers have been considered robustness fur only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness fur the variation of frequency and damping ratio.

Design of Robust Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper (Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증)

  • Kim, Y.H.;Woo, M.A.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.

An Application of the Genetic Algorithm for the Input Shaper on the High Order System (입력 성형기의 고차 시스템 적용을 위한 GA활용)

  • Jeong, Hwang Hun;Yun, So Nam;Lee, Sang Hun
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, industrial systems are becoming quicker and lighter to enable the reduction of energy consumption and increase productivity. So the latest systems are more flexible and rapid than the previous systems. But, with this improvement, another problem has emerged, such as the increase in residual vibration when a system is started or stopped. The input shaper is a command generation method that can remove residual vibration. It can provide a solution to the problem of residual vibration in industrial systems. However, it is difficult to generate the input shaper in high order systems, such as a typical industrial system because the input shaper is induced from the system's vibration characteristics. This study focused on the extra insensitivity shaper that can compensate for the system's modeling error such as input dynamics, and the high order's system affection. A genetic algorithm was deployed to adjust a vibration limitation for the extra insensitivity of the input shaper. A plant is a low damping system that includes one zero and a pole. The fitness functions are an error signal of the system's response with normalized frequency variations. Verification of the suggested system is satisfied by comparison between the zero vibration derivative input shaper's response and the suggested one.