• Title/Summary/Keyword: shape rolling process

Search Result 135, Processing Time 0.03 seconds

BDM Rolling of Middle Sized H-beams from a Bloom (블룸을 이용한 중형 H 형강 BDM 압연 공정 연구)

  • Kim, J.M.;Kim, K.W.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • H-beams are generally produced by hot rolling composed of a Break Down Mill (BDM) and a Finishing Mill (FM). The goal of the current study was to develop BDM rolling of H300x300 beams from blooms slit from slabs. In order to manufacture H300x300 beams, the caliber design and the pass schedule of BDM rolling were proposed for a bloom instead of a beam blank. The proposed BDM caliber design and pass schedule were tested using FE-simulation and pilot tests. For the major shape dimensions, such as flange width, web height, web thickness, as well as BDM rolling loads, a comparative analysis between the FE-simulation and the pilot rolling tests was conducted. The results of FEM analysis and pilot rolling tests showed good consistency. Moreover, BDM rolling loads were predicted to be in the range of allowable rolling loads. It was concluded that the designed BDM rolling is suitable for implementation within current manufacturing capacity.

A Study On The Microstructural Evolution In Hot Rolling (열간압연중 발생하는 미세조직 변화에 관한 연구)

  • 조현중;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.16-29
    • /
    • 1995
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical mathematical equations suggested by different research groups were used together to form an integrated system of process and microstructure simulation of hot rolling. The distribution and time history of thermomechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained FEM analysis of multipass hot rolling processes. Then distribution of metallurgical variables were calculated successfully on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in literature. Consequently, this approach makes it passible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

A Integral Model for the Analysis of Strip Temperatures During ROT Cooling in Hot Strip Rolling (ROT 냉각과정의 Strip 두께방향의 열전달 해석)

  • An J. Y.;Hwang S. M.;Sun S. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • A finite element-based, integrated process model is presented for coupled analysis of the thermal and metallurgical behavior of the strip occurring on the run-out-table in hot strip rolling. The validity of the proposed model is examined through comparison with measurements. The models capability of revealing the effect of cooling pattern on strip temperatures and the optimal cooling pattern are demonstrated through a series of process simulation. In order to improve strip shape and control temperature history of thickness direction for strip during ROT cooling.

  • PDF

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

Simulation of Fuzzy Shape Control for Cold-Rolled Strip with Randomly Irregular Strip Shape (임의 불량형상을 갖는 냉연판의 퍼지형상제어 시뮬레이션)

  • Jung, Jong-Yeob;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.861-871
    • /
    • 1996
  • In this study, a fuzzy control algorithm was developed for the randomly irregular shape of cold-rolled strip. Currently developed fuzzy control algorithm consists of two parts: the first part calculates the changes of work and intermediate roll bender forces based on the symmetric part of the irregular strip shape, and the second part calculates the weighting factors based on the asymmetric part and modifies the pre-determined roll bender forces according to the weighting factors. As a result of this, bender froces applied at the both sides of the cold-rolled strip were different. In order to simulate the continuous shape control. fuzzy controller developed was linked with emulator which was developed based on neural network. The fuzzy controller and emulator developed simulated the cold rolling process until irregular shape converged to a tolerable range in producing uniform cross-sectional strip shape. The results obtained from the simulation were reasonable for various irregular strip shapes.

A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process (직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석)

  • 김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Process Planning for Insert Metal of Weather Strip Using High Speed Rolling-Type (고속 압연방식을 이용한 Weather strip 용 Insert metal 공정설계)

  • Park, Ji-Su;Lee, Hyun-Woo;Jung, Sung-Yuen;Bae, Jun-Ho;Kim, Hwa-Young;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1279-1287
    • /
    • 2011
  • Weather strip is a functional component of a car body and doors for leaking protection, isolating outside noise and vibration reduction. Insert metal inserted to the weather strip plays a key role to keep the shape of the weather strip and increase its strength. Insert metal is mainly produced by a press process, which has low productivity and 40% material loss due to the scraps. To solve the problems, a high-speed rolling process for manufacturing the insert metal of weather strip is being attempted. In this study, the insert metal is manufactured by a high-speed rolling process, and its process variables: reduction, relative velocity of rollers and the number of passes, are optimized by using the FEA and the actual tests. The prototype was manufactured by the optimal process.

Cold Rolling and Heat Treatment Characteristics of TiNi Based Shape Memory Wire (TiNi계 형상기억합금 선재의 냉간압연 및 열처리 특성)

  • Kim, R.H.;Kim, H.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.251-257
    • /
    • 2017
  • The effect of annealing temperature on the martensitic transformation behavior, tensile deformation chracteristics and shape recovery etc., has been studied in TiNi based shape memory ribbon fabricated by coldrolling of wire. TiNi based shape memory wire (${\phi}=500{\mu}m$) of which structure is intermetallic compound could be cold-rolled without process annealing up to the reduction rate in thickness of 50%, but a few cracks appear in cold-rolled ribbon in the reduction rate in thickness of 65%. The $B2{\rightarrow}R{\rightarrow}B19^{\prime}$ martensitic transformation or $B2{\rightarrow}B19^{\prime}$ martensitic transformation occurs in annealing conditions dissipating lattice defects introduced by coldrolling. However, in case of higher reduction rate or lower annealing temperature, martensitic transformation in cold-rolled and then annealed ribbons does not occur. The maximum shape recovery rate of cold-rolled ribbons with the reduction rate of 35 and 65% could be achieved at annealing temperatures of 250 and $350^{\circ}C$, respectively. The shape recovery rate seems to be related to the stress level of plateau region on stress-strain curve.

An Algorithm on Determination of Process Parameters for Roller Bending of Curved Shell Plates (선체 곡판의 롤 굽힘 공정 변수 결정을 위한 가공 형상의 최적 근사 알고리즘)

  • Ryu, Cheol-Ho;Lee, Jang-Hyun;Yoon, Jong-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.517-525
    • /
    • 2007
  • This paper presents how to approximate an optimal shape of roll bending process in the fabrication of a curved shell plate. The roll bending process usually makes the cylindrical or conic shape from an initial flat plate. It means that the final shape is developable or its surface representation has zero Gaussian curvature. The fabrication shape is important in order to find process parameters of roil bending. An optimal concept is used to determine the developable fabrication shape which is in the closest proximity to the design surface or the given shell plate and is subject to developability. The results and the efficiency of this algorithm are evaluated by applying to some shell plates. Furthermore, the fabrication shape will be fundamental information for other process parameters of roll bending such as the vertical displacement of the center roller and the rolling directions.

Development of Set-up Model for Elongation Control in Steel Skin Pass Mill (조질압연에서의 연신율제어를 위한 set-up 모델 개발)

  • 이원호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The mathematical set-up model was developed to reduce the mechanical property deviation in annealed and slightly rolled steel strip. The mechanical peculiarities of skin pass rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation zone are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The strip restricted deformation zone near the neutral point is also considered. It was revealed that the new model has better accuracy than present regression model by statistical analysis with actual mill rolling data.

  • PDF