• Title/Summary/Keyword: shape rolling process

Search Result 135, Processing Time 0.022 seconds

Study of Edge Crack Growth According to Rolling Condition in Cold Rolling (냉간압연공정에서 공정변수에 따른 엣지 크랙 성장에 관한 연구)

  • Cui, X.Z.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The shape of edge cracking in rolling process generally occurred "V" shape. This cracking is successively generated at width edge of strip. The edge cracking is developed to center of strip during rolling process. In the results, the strip is occurred fracture, and the productivity is gone down because of the extensive production time. Accordingly, we need to control crack propagation during rolling process. But, the control of cracking is very difficult in rolling process. Previously the studies of edge cracking were mainly performed on hot rolling process. In this paper, the shape of the edge cracking in rolling was estimated according to process conditions such as initial edge crack size, reduction ratio and tension using FE-simulation and the simplicity experiments on cold rolling process.

Effect of Rolling Speed on the Exit Cross Sectional Shape in Rod Rolling Process

  • Lee, Young-Seog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • A rolling speed dependent spread model is proposed for predicting the exit cross sectional shape in oval-round (or round-oval) pass rod rolling process when the rolling speed is very high. The effect of rolling speed on the exit cross sectional shape is measured by performing a four-pass continuous high speed (${\sim}80m/s$) rod rolling test and is described in terms of the spread correction parameter. The validity of the model is examined by applying it to rod rolling process at POSCO No.3 Rod Mill. The cross sectional shapes of workpiece predicted by the proposed model coupled with the surface profile prediction $method^{6}$ are in good agreement with those obtained experimentally.

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Study on the Irregular Shape Rolling Process (비대칭 형상 압연 공정에 대한 연구)

  • 김용철;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.98-106
    • /
    • 1999
  • In this study cold rolling process for the irregular cross-sectional shape has been investigated. The product analyzed in present study is the steel cutter, which is frequently used to cut the desired shape on leather. Because steel cutter always has a irregular cross-section, after rolling process the workpiece is severely bended to every direction. The bending of the workpiece affects the processed performed after rolling such as heat treatment and grinding, then that of the workpiece becomes more severe. In this study, therefore, to prevent the bending of the workpiece to the left and right sides. rigid-plastic finite element method has been utilized and in order to find optimal roll geometry rapidly, one dimensional equal interval search technique has been also introduced. By using both rigid plastic finite element method and optimum technique, cold rolling process for the irregular cross-sectional shape has been successfully investigated.

A Fuzzy Shape Control Method for the Stainless Steel at the Cold Rolling Process (스테인리스 냉연공정에서 퍼지 형상제어)

  • Hur, Yone-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1062-1070
    • /
    • 2009
  • The strip shape for the stainless steel process has made an issue of the strip quality, and hence the shape control method is developed at the Sendzimir rolling mill (ZRM). ZRM is a stainless cold rolling mill and has actuators for the shape control. They are first intermediate rolls and top crown rolls, which are controlled horizontally and vertically, respectively. The shape control of the stainless steel rolling process has difficulty in obtaining the symmetrical shape. The objective of the shape control is to minimize the shape deviation and to maintain stable state, which keeps symmetrical shape pattern in the lateral direction. The method of the shape recognition employs a least squares method and neural network. The shape deviation is the difference between the target shape and actual shape and is controlled by the fuzzy shape control. The fuzzy shape control using operator's informative knowledge is proposed in this paper. The experiments are carried out online for various stainless materials and sizes. The productivity of the rolling process has increased from 9.0 to 9.4 tons per hour.

Process Design of Multi-Pass Shape Rolling for Manufacturing Piston Ring Wire (피스톤 링 제조용 선재의 다단 형상 압연공정 설계)

  • Kim, N.J.;Lee, K.H.;Lim, S.H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Multi-pass shape rolling is performed to produce long products of arbitrary cross-sectional shapes. In the past, the multi-pass shape rolling process has been designed by the trial and error method or the experience of experts based on the empirical approach. Particularly, the design of roll caliber in shape rolling is important to improve product quality and dimensional accuracy. In this paper, the caliber design and pass schedule of multi-pass shape rolling were proposed for manufacturing piston ring wire. In order to design roll caliber, major shape parameter and dimension was determined by analysis of various caliber design. FE-simulation was conducted to verify effectiveness of proposed process design. At first, forming simulation was performed to predict shape of the product. Then, fracture of the wire was evaluated by critical damage value using normalized Cockcroft-Latham criteria. The experiment was carried out and the results are within the allowable tolerance.

The Analysis of H-Shape Rolling by the Finite Element Method (유한요소법에 의한 H형강 압연공정의 해석)

  • 신현우;김낙수;박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1095-1105
    • /
    • 1993
  • Shape rolling processes to produce H-section beams are numerically simulated by the simplified three-dimensional finite element method. The 2-dimensional finite element method, used for the generalized plane strain condition, is combined with the slab method. Computer simulation results of the 19-passes in H-section beam rolling in practice include the grid distortions, the cross-sectional area changes, the roll separating forces, and the roll torques. Also, the amount of side spread can be found during the multi-pass rolling simulations. The finite element mesh system is remeshed with I-DEAS whenever the billet distorts severely. This study would contribute to CAD/CAM of shape rolling process through the optimal roll pass schedule.

Ski-end shape control based on the model in heavy plate mill (후판 압연공정에서의 판 선단부 형상제어 연구)

  • Chun, M.S.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.93-95
    • /
    • 2007
  • Studies on ski-end shape control at the top end of rolling plate in heavy thick plate mill by using FEM analysis and measuring system have been performed. Plate shape behaviour at the top-end on rolling by the two different methods in finishing rolling process has been observed. One is to minimize the height of ski-end by using pass line based on the relational model between shape factor and pick-up and the other one is to prevent turn down problem caused by the impact between table roller and down bended plate on rolling by using roll speed difference. To minimize the height of ski-end, the prediction models based on the FEM analysis and measuring data was developed. The control method of ski - end shape on finishing rolling process was applied in actual mill and the height of ski-end was reduced by about 50% compared with conventional operation.

  • PDF

Simulation of H-beam rolling process using FEM (FEM을 이용한 H형강 압연공정 해석)

  • Park, C.S.;Kim, J.M.;Woo, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.419-422
    • /
    • 2008
  • It is most important to design the roll pass in shape rolling process. However, roll pass design has been accomplished by experience and intuition of a skilled engineer up to now. And it has being produced throughout a lot of trial and error. Thus, in this study, we tried to analysis the rolling process of H-beam by using FEM program for the quantitative evaluation of the plastic deformation. It could be predicted that rolling load, torque, shape of cross section and distribution of effective strain each pass by the analysis of rolling from break down mill(2 Hi rolling) to finishing rolling(Universal rolling) considering the heat transfer.

  • PDF

The Elasto-Plastic Finite Element Analysis of Ductile Fracture in Shape Rolling (형상압연시 연성파괴의 탄소성 유한요소해석)

  • 원영목;오규환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • During the shape rolling process the influence of reduction ration and taper of shape roller on deformation and limit of ductile fracture such as free surface cracks developing in the workpiece has been studied. The deformation behaviours were analyzed by the 3-dimensional elasto-pastic finite element method and the conditions of ductile fracture were determined from 3-dimensional elasto-plastic finite element method and modified Cockrogt-Latham criterion. The deformed geometry and prediction of ductile fracture by 3-dimensional elasto-plastic finite element method are compared with experimental results The calcuated results are in good agreements with experimental data. The analysis used in the study was found to be effective in predicting the shape rolling process.

  • PDF