• Title/Summary/Keyword: shape rolling

Search Result 299, Processing Time 0.027 seconds

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

Technical Trend Analysis of Fingerprint Classification (지문분류 기술 동향 분석)

  • Jung, Hye-Wuk;Lee, Seung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.132-144
    • /
    • 2017
  • The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

Analysis of Resonant Characteristics in High Voltage Windings of Main Transformer for Railway Vehicle using EMTP (EMTP를 이용한 철도차량용 주변압기 고압권선의 공진특성 분석)

  • Jeong, Ki-Seok;Jang, Dong-Uk;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.436-444
    • /
    • 2016
  • The primary windings of the main transformer for rolling stock have several natural frequencies that can occur internal resonance with transient voltages induced on a high voltage feeding line. Factory testing is limited in its ability to determine whether or not transient voltage with various shape and duration can be excitable. This study presents the design of a high voltage windings model and simulation and analysis of the internal resonant characteristics in terms of the initial voltage distribution and voltage-frequency relationship using the electromagnetic transients program (EMTP). Turn-based lumped-parameters are calculated using the geometry data of the transformer. And, sub-models, being grouped into the total number of layers, are composed using a ladder-network model and implemented by the library function of EMTP. Case studies are used to show the layer-based voltage-frequency relationship characteristics according to the frequency sweep and the voltage escalation and distribution aspects in time-domain simulation.

3D printing of multiple container models and their trajectory tests in calm water

  • Li, Yi;Yu, Hanqi;Smith, Damon;Khonsari, M.M.;Thiel, Ryan;Morrissey, George;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.225-245
    • /
    • 2022
  • More and more shipping containers are falling into the sea due to bad weather. Containers lost at sea negatively affect the shipping line, the trader and the consumer, and the environment. The question of locating and recovering dropped containers is a challenging engineering problem. Model-testing of small-scaled container models is proposed as an efficient way to investigate their falling trajectories to salvage them. In this study, we first build a standard 20-ft container model in SOLIDWORKS. Then, a three-dimensional (3D) geometric model in the STL (Standard Tessellation Language) format is exported to a Stratasys F170 Fused Deposition Modeling (FDM) printer. In total, six models were made of acrylonitrile styrene acrylate (ASA) and printed for the purpose of testing. They represent three different loading conditions with different densities and center of gravity (COG). Two samples for each condition were tested. The physical models were dropped into the towing tank of University of New Orleans (UNO). From the experimental tests, it is found that the impact of the initial position after sinking can cause a certain initial rolling velocity, which may have a great impact on the lateral displacement, and subsequently affect the final landing position. This series of model tests not only provide experimental data for the study of the trajectory of box-shape objects but also provide a valuable reference for maritime salvage operations and for the pipeline layout design.

Fabrication of 250 m class Bi-2223/Ag HTS Tapes (250 m 급 Bi-2223/Ag 고온 초전도선재 제조)

  • Ha, H.S.;Oh, S.S.;Ha, D.W.;Jang, H.M.;Kim, S.C.;Song, K.J.;Park, C.;Kwon, Y.K.;Ryu, K.S.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.130-133
    • /
    • 2001
  • A multifilamentary Bi-2223 HTS tape for superconducting power applications was studied through the fabrication of 250-meter long tapes by the PIT(powder in tube) process. To fabricate continuous long wire, a drawing machine, a two-drum bull block and a rolled tape winding machine were developed. Especially, 250-meter long tapes were heat treated in the shape of pancake coil to reduce the heat affect zone and to achieve the high critical current. Engineering critical current density was improved through both the enhancements of critical current density by control of thermal process and the increase of filling factor by using thin Ag alloy sheath tubes less than 1.5 mm in thickness. We have made successfully 250-meter long 37 filamentary tapes with high filling factor up to 31 % employing the modified drawing and rolling technique. The critical current of 250-meter long tapes with pancake coil type was measured by transport method at self-field up to 250 gauss of center field. The measured values, based on the transport critical current at self-field, $I_{c}$ -B characteristics and magnetic field analysis, are 34 A of I$_{c}$ and 4.0 $kA/\textrm{cm}^2$ of $J_{e}$ at 250 m, 77 K, and 0 T. We also have achieved the 56 A of I$_{c}$ and 7.0 $0 kA/\textrm{cm}^2$ of$ J_{e}$ in short tapes at 77K, self-field, and 1$mutextrm{V}$/cm.

  • PDF

Measurement of Damping Coefficients of a Squeeze Film Damper with Piston Ring Seal Ends (피스톤 링 실 끝단을 갖는 스퀴즈 필름 댐퍼의 감쇠 계수 측정)

  • Nam Kyu Kim;Yeongchae Song;Tae Ho Kim;Jeonggi Hong;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.54-60
    • /
    • 2024
  • This study experimentally identifies the effects of end shape, clearance, total damper length, journal eccentricity ratio, oil supply pressure, and oil flow rate on the damping coefficient of a squeeze film damper (SFD) with piston ring seal ends and a central groove. The SFD is composed of a lubricating fluid flowing between the outer race of a rolling element bearing and cartridge, along with an anti-rotation pin to prevent the rotation of the outer race. The device provides additional viscous damping to a rotating system. Additionally, piston ring seals attached at both ends of the damper increase the damping coefficient of the rotating system by reducing oil leakage. Because these different design conditions affect the damping coefficient of an SFD, we perform experiments including different conditions. Tests show that the damping coefficient increases significantly in the SFD with piston ring seal ends compared with the SFD with open ends. The damping coefficient also increases with increasing total damper length and journal eccentricity ratio, and decreases with increasing clearance. Additionally, in contrast to the trend observed for the SFD with open ends, the damping coefficient for the SFD with piston ring seal ends increases with increasing supply pressure and flow rate as the frequency decreases but shows consistent results as the frequency increases.

A Study of Metalworking Techniques Seen in the Gold Buckle from Seogam-ri Tomb No. 9 (석암리 9호분 출토 금제띠고리의 제작 방법 고찰)

  • Ro, Jihyun;Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.1-16
    • /
    • 2016
  • The gold buckle excavated from Seogam-ri Tomb No. 9(National Treasure No. 189), one of the oldest gold artifacts discovered within the Korean Peninsula, was created using granulation techniques. The buckle is made with 22.8K gold sheets and features a decorative design with seven dragons in repousse metalwork. The outlines of the dragons and the edge of the buckle are finished with 23.8K gold wires and granules. Some curved sections of the buckle are also covered with an extra sheet of 23.8K gold, possibly added to repair defects discovered during production or thereafter. Gold wire used to render the dragon's nostrils is slightly lower in purity(23.3K) and was probably preferred in this case due to its increased hardness. As a result, the metal is better able to retain the complex shape of the dragons' nostrils, created by rolling gold wire into spirals. The buckle's gold granules are found in small, medium and large sizes and are presumed to have been bonded using copper. The foreheads and the bodies of the seven dragons are inset with turquoise and the eyes are decorated with red cinnabar/vermillion(HgS).

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer (Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화)

  • Ryoo, Joo-Yeon;Bae, Jung-Eun;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.371-382
    • /
    • 2020
  • There have been continuous attempts to quantify sensory attributes of cosmetic products by measuring relevant physical properties. The most representative method to evaluate stickiness is to measure axial force using texture analyzer. Stickiness is known to correlate with AUC which abbreviates area under curve in the obtained axial force curve as a function of time. Recently, Normandie University research group developed in vivo stickiness evaluation method considering the characteristics of skin along with established evaluation method[8]. Based on the study, we tried to optimize in vivo stickiness evaluation method especially for cosmetic creams. The experiment was carried out on 5 different facial creams products by changing the amount and the times of rolling of creams, and the shape and material of probes. Based on the results of the sensory evaluation, the most consistent conditions were established as the optimal evaluation method. As a result, applying 70 μL of cream and rubbing 10 times for 7 s inside the 3.4 cm circle were judged to be suitable. As for the probes, spherical metallic probe was more proper due to its reproducibility. We conducted the settled method on 10 subjects to check its validity. Although the absolute values of AUC differed depending on the individuals, the AUC values were all ranked the same. Finally, for the standardization of stickiness of AUC, polyvinylpyrrolidone (PVP) was set as a reference material and we measured AUC of its aqueous solution by changing concentration. Then, the degree of stickiness recognition for 5 different creams was surveyed to check the correlation between AUC and stickiness.