• Title/Summary/Keyword: shape retrieval

Search Result 230, Processing Time 0.022 seconds

A Retrieval System of Environment Education Contents using Method of Automatic Annotation and Histogram (자동 주석 및 히스토그램 기법을 이용한 환경 교육 컨텐츠 검색 시스템)

  • Lee, Keun-Wang;Kim, Jin-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.114-121
    • /
    • 2008
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. In this paper, we propose semantic-based video retrieval system for Environment Education Contents which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted form query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

Two-phase Content-based Image Retrieval Using the Clustering of Feature Vector (특징벡터의 끌러스터링 기법을 통한 2단계 내용기반 이미지검색 시스템)

  • 조정원;최병욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.3
    • /
    • pp.171-180
    • /
    • 2003
  • A content-based image retrieval(CBIR) system builds the image database using low-level features such as color, shape and texture and provides similar images that user wants to retrieve when the retrieval request occurs. What the user is interest in is a response time in consideration of the building time to build the index database and the response time to obtain the retrieval results from the query image. In a content-based image retrieval system, the similarity computing time comparing a query with images in database takes the most time in whole response time. In this paper, we propose the two-phase search method with the clustering technique of feature vector in order to minimize the similarity computing time. Experimental results show that this two-phase search method is 2-times faster than the conventional full-search method using original features of ail images in image database, while maintaining the same retrieval relevance as the conventional full-search method. And the proposed method is more effective as the number of images increases.

Emotion from Color images and Its Application to Content-based Image Retrievals (칼라영상의 감성평가와 이를 이용한 내용기반 영상검색)

  • Park, Joong-Soo;Eum, Kyoung-Bae;Shin, Kyung-Hae;Lee, Joon-Whoan;Park, Dong-Sun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.179-188
    • /
    • 2003
  • In content-based image retrieval, the query is an image itself and the retrieval process is the process that seeking the similar images to the given query image. In this way of retrieval, the user has to know the basic physical features of target images that he wants to retrieve. But it has some restriction because to retrieve the target image he has to know the basic physical feature space such as color, texture, shape and spatial relationship. In this paper, we propose an emotion-based retrieval system. It uses the emotion that color images have. It is different from past emotion-based image retrieval in point of view that it uses relevance feedback to estimate the users intend and it is easily combined with past content-based image retrieval system. To test the performance of our proposed system, we use MPEG-7 color descriptor and emotion language such as "warm", "clean", "bright" and "delight" We test about 1500 wallpaper images and get successful result.lpaper images and get successful result.

Two-stage Content-based Image Retrieval Using the Dimensionality Condensation of Feature Vector (특징벡터의 차원축약 기법을 이용한 2단계 내용기반 이미지검색 시스템)

  • 조정원;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.719-725
    • /
    • 2003
  • The content-based image retrieval system extracts features of color, shape and texture from raw images, and builds the database with those features in the indexing process. The search in the whole retrieval system is defined as a process which finds images that have large similarity to query image using the feature database. This paper proposes a new two-stage search method in the content-based image retrieval system. The method is that the features are condensed and stored by the property of Cauchy-Schwartz inequality in order to reduce the similarity computation time which takes a mostly response time from entering a query to getting retrieval results. By the extensive computer simulations, we have observed that the proposed two-stage search method successfully reduces the similarity computation time while maintaining the same retrieval relevance as the conventional exhaustive search method. We also have observed that the method is more effective as the number of images and dimensions of the feature space increase.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

The Optimized Values of Fuzzy Measure for Content-based Image Retrieval (내용기반 영상 검색을 위한 최적의 퍼지측도)

  • Kim, Dong-Woo;Song, Young-Jun;Kim, Young-Gil;Chang, Un-Dong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.612-615
    • /
    • 2006
  • The management of image information settles as an important field with the advent of multimedia age and we are in need of the effective retrieval method to manage systematically image information. It is used to color, texture, and shape features for content-based image retrieval. And existing methods using multiple features have problems that the retrieval process is embarrassed because each weight is set up manually. So we have solved these problems by assignment of weight applying fuzzy integral. This paper proposed the optimized values of fuzzy measure by experiments.

  • PDF

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

The Analysis of Visual Descriptors for Content-based Video Retrieval (내용기반 비디오 검색을 위한 MPEG-7 비주얼 디스크립터 분석)

  • Kim, Seong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2005
  • The main purpose of this paper is to explain and analyze visual descriptors of MPEG-7 for representing multimedia content. This study describes MPEG-7 visual descriptors that are made of color, shape, texture, and motion using some examples and application areas in detail. As a result, those visual descriptors can represent the rich and deep features in multimedia contents domain. Also, the use of those descriptors will increase the retrieval effectiveness as well as the interoperability among systems through the consistency of the content representation.

  • PDF